期刊文献+

基于区块链技术的僵尸网络命令控制信道研究 被引量:3

Research on Command Control Channel of Botnet Based on Blockchain Technology
下载PDF
导出
摘要 随着区块链技术的快速发展,其应用越来越广泛和成熟.区块链的去中心化、匿名性和不可篡改性等特性使其受到恶意软件家族的关注,通过区块链来构建僵尸网络使得僵尸网络非常稳固不容易被摧毁.重点介绍两种使用区块链来构建僵尸网络的方法,提出针对此类僵尸网络的检测防御方法,保护用户免受侵害. With the rapid development of block chain technology,its application is more and more extensive and mature.The decentralized,anony mous and tamperable characteristics of blockchain make it attracted the attention of the malware family.The botnet constructed by block chain makes the botnet very stable and not easy to be destroyed.Aiming at the case that attackers use blockchain to build botnet,proposes an effective detection and defense method to protect users from infringement.
作者 李德奇 胡大裟 刘云霞 蒋玉明 LI De-qi;HU Da-sha;LIU Yun-xia;JIANG Yu-ming(College of Computer Science,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2020年第8期30-36,共7页 Modern Computer
关键词 僵尸网络 区块链 交易 智能合约 控制指令 Botnet Blockchain Transactions Smart Contract Control Command
  • 相关文献

参考文献4

二级参考文献29

  • 1李全存,刘东飞,张旋.基于攻击树的分布式入侵检测系统的研究[J].计算机与数字工程,2007,35(2):101-103. 被引量:2
  • 2Ollmann G. Botnet communication topologies [R]. Damballa White Paper, 2009:6-7.
  • 3Porras P, Saidi H, Yegneswaran V. A foray into conficker' s logic and rendezvous points [R]. Sri International, 2009: 10-11.
  • 4Holz T, Gorecki C, Rieck C, et al. Measuring and detecting fast-flux service networks [C]. San Diego, California: Proc NDSS, 2008.
  • 5Passerini E, Paleari R, Martignoni L, et al. FluXOR: Detecting and monitoring fast-flux service networks [C]. Paris, France: Proceedings of the 5th Conference on Detection of Intrusions and Malware ~ Vulnerability Assessment, 2008: 186-206.
  • 6Caglayan A, Toothaker M, Drapeau D, et al. Realtime detection of fast flux service networks [C]. Washington DC, USA: Cybersecurity Applications &Technology Conference For Homeland Security, IEEE Computer Society, 2009: 285-292.
  • 7Gross B, Cova M, Cavallaro L, et al. Your botnet is my hotnet: Analysis of a botnet takeover[R]. Proceedings of the ACM CCS, 2009.
  • 8Yadav S, Reddy A, Reddy A, et al. Detecting algorithmically generated malicious domain names [C]. Melbourne, Australia: Proceedings of the 10th Annual Conference on Intemet Measurement, ACM, 2010: 48-61.
  • 9McAfee. McAfee SiteAdvisor[DB/OL]. http://www, siteadvisor, com/, 2011.
  • 10Google. Google safe browsing [DB/OL]. http://www.google, com/tools/firefox/safebrowsing/, 2011.

共引文献34

同被引文献29

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部