期刊文献+

基于特征与形貌重构的轴件表面缺陷检测方法 被引量:8

Shaft surface defect detection method based on feature and morphology reconstruction
下载PDF
导出
摘要 针对轴件表面缺陷机器视觉检测方法中的水渍残留误检率高和人工复检效率低问题,提出一种基于特征与形貌重构的轴件表面缺陷检测方法.对轴件工业高速线扫描图像进行预处理,基于改进的阀值迭代算法完成图像分割,通过去除背景、噪点和干扰提取缺陷图像.建立基于曲线簇包络轮廓的轴件表面缺陷特征模型,结合分割图像各连通域的面积、面积占比、粗短度训练逻辑回归分类器,对凹坑、裂纹和麻点等轴件表面典型缺陷进行识别,并结合图像深度信息进行缺陷形貌重构,消除水渍等伪缺陷,提高轴件表面缺陷检测鲁棒性.实验结果表明,所提出的轴件表面缺陷检测方法有效,具有较高的缺陷识别率和鲁棒性能,平均识别时间为3.69 s,缺陷轴加权识别率为98.86%,可以对3类典型缺陷和水渍进行准确识别. A surface defect detection method based on feature and morphology reconstruction was proposed, aiming at the problems of high misdetection rate of water stain residue and low efficiency of manual re-inspection in machine vision detection of defects in shaft parts surface. The high-speed industry line scanning image of the shaft part was preprocessed, and image segmentation was completed based on the improved threshold iteration algorithm.Defect image was extracted by removing background, noise, and interference. A surface defect feature model of shaft parts based on envelope contour of curve cluster was established. Combining the area, the proportion of area and coarseness of each connected area in the segmented image, a logistic regression classifier was trained to recognize the typical surface defects of pits, cracks, and pits of shaft parts. Combining with image depth information,defect morphology reconstruction was carried out to eliminate pseudo-defects such as water stain, so as to improve the robustness of surface defect detection of shaft parts. The experimental results show that this method is effective for surface defect detection of shaft parts with high defect recognition rate and robustness. The proposed method has an average recognition time of 3.69 seconds and a weighted recognition rate of 98.86%, which can accurately identify three kinds of typical defects and pseudo-defects.
作者 冯毅雄 李康杰 高一聪 郑浩 谭建荣 FENG Yi-xiong;LI Kang-jie;GAO Yi-cong;ZHEN Hao;TAN Jian-rong(State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou 310027,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第3期427-434,共8页 Journal of Zhejiang University:Engineering Science
基金 国家重点研发计划资助项目(2017YFB1301201) 国家自然科学基金资助项目(51675477,51775489,51805472) 浙江省自然科学基金资助项目(LZ18E050001).
关键词 轴件表面缺陷 缺陷特征提取 形貌重构 缺陷分类 defect of shaft surface defect feature extraction shape reconstruction defect classification
  • 相关文献

参考文献5

二级参考文献41

  • 1赵鹏,浦昭邦,张田文.基于图像融合的动态轮廓线跟踪新方法[J].光学学报,2005,25(6):760-766. 被引量:9
  • 2闫成新,桑农,张天序,曾坤.基于局部复杂度的图像过渡区提取与分割[J].红外与毫米波学报,2005,24(4):312-316. 被引量:25
  • 3MALAMAS E, PETRAKIS G M, ZERVAKIS M, et al. A survey on industrial vision system, applications and tools[J].Image and Vision Computing, 2003, 21 (2): 171 - 188.
  • 4NIKHIL R P, SANKAR K P. A review on image segmentation techniques [J].Pattern Recognition, 1993, 26(9): 1277-1294.
  • 5GELADI P, GRAHN H. Multivariate Image Analysis [M].Chichester U K: Wiley, 1996.
  • 6ESBENSEN KH, GELADI P. Strategy of multivariate image analysis[J]. Chemometries and Intelligent Laboratory Systems, 1989, 7(1 - 2) : 67 - 86.
  • 7BHARATI MH, MACGREGOR JF. Multivariate image analysis for real-time process monitoring and control[J]. Industrial & Engineering Chemistry Research, 1998, 37(12): 4715-4724.
  • 8BHARATI MH, MACGREGOR JF. Texture analysis of images using Principal Component Analysis[C].// SPIE/Photonics Conference on Process Imaging for Auto- matic Control. Boston, MA: SPIE,2000. 27-37.
  • 9BHARATI M H, MACGREGOR J F, TROPPER W. Softwood lumber grading through on-line multivariate image analysis techniques[J]. Industrial and Engineering Chemistry Research, 2003, 42(21) : 5345 - 5353.
  • 10PRATS-MONTALBAN J M, FERRER A. Integration of colour and textural information in multivariate image analysis., defect detection and classification issues [J]. Journal of Chemometrics, 2007, 21(1-2) : 10 - 23.

共引文献63

同被引文献111

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部