期刊文献+

基于DR-BN的冷水机组故障检测 被引量:6

Fault Detection for Chiller Based on DR-BN
下载PDF
导出
摘要 在冷水机组现场的故障数据通常难以获得,这是导致基于多分类算法的故障检测方法未被广泛现场应用的主要障碍之一。本文将距离拒绝(DR)机制融入贝叶斯网络(BN)中,将冷水机组故障检测转化为一类划分问题,提出一种基于DR-BN的冷水机组故障检测方法,该方法仅使用正常数据训练模型,从而有效克服上述障碍。本文通过使用ASHRAE RP-1043的故障实验数据对提出方法的性能进行验证,并与传统方法的性能进行了对比,可知基于DR-BN的模型具有更高的故障检测性能,尤其对低劣化等级下的故障,故障检测正确率最高时可高出94%。 The chiller fault data are often difficult to obtain in the field,which is one of the key obstacles hindering the field applications of chiller fault detection.Considering this reality,the fault detection task is transformed into a typical one-class classification problem by merging a distance rejection(DR)technique into a Bayesian network(BN);therefore,a method based on DR-BN is proposed in this study.The proposed method effectively overcomes the above-mentioned limitation by using the normal data alone to train the model.The performance of the proposed method is evaluated by using the experimental data from the ASHRAE RP-1043,and compared with the other traditional methods.The proposed method shows a better performance than the other traditional methods.Especially for the low serious level,the maximum accuracy of the proposed method is increased by 94%.
作者 王占伟 王林 袁俊飞 谈莹莹 周西文 Wang Zhanwei;Wang Lin;Yuan Junfei;Tan Yingying;Zhou Xiwen(Institute of Refrigeration, Heat Pump, and Air Conditioning, Henan University of Science and Technology, Luoyang, 471023, China)
出处 《制冷学报》 CAS CSCD 北大核心 2020年第2期87-92,共6页 Journal of Refrigeration
基金 国家自然科学基金(51806060,51876055)资助项目。
关键词 冷水机组 故障检测 贝叶斯网络 距离拒绝 chiller fault detection Bayesian network distance rejection
  • 相关文献

参考文献4

二级参考文献46

  • 1姚文俊.基于遗传算法的故障诊断的研究[J].微计算机应用,2004,25(3):280-283. 被引量:6
  • 2赵云,刘惟一.基于遗传算法的特征选择方法[J].计算机工程与应用,2004,40(15):52-54. 被引量:16
  • 3苗君明,佟刚,杨者青.基于遗传算法的神经网络优化[J].沈阳航空工业学院学报,2005,22(3):30-32. 被引量:8
  • 4维基百科.大数据[EB/OL],(2014- 02- 21 ) [2014- 02- 27]. http://zh. wikipedia.org/wiki/大数据.
  • 5Lynch C. Big data: how do your data grow? [J]. Nature, 2008, 455 (7209) : 28-29.
  • 6Frankel F, Reid R. Big data: distilling meaning from data [J]. Nature, 2008, 455 (7209): 30-30.
  • 7Kum H, Ahalt S, Carsey T M. Dealing with data: govern- ments records [ J ]. Science, 2011, 332 (6035) : 1263.
  • 8Los W, Wood J. Dealing with data: upgrading infrastruc- ture[J]. Science, 2011, 331 (6024) : 1515-1516.
  • 9科技部.美国政府出台大数据研发计划[EB/OL].(2012-04-24)[2014—12-01].http://www.most.gov.cn/gnwkjdt/201204/t20120424_93877.htm.
  • 10王鹏,崔莹.中国企业大数据联盟成立,三主线挖掘概念股投资机会[EB/OL].(2014—11-07)[2014.12-01].http://stock.cnstock.corn/stock/smk_qlgg/201411/3232816.htm.

共引文献84

同被引文献45

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部