期刊文献+

骨骼肌肥大的核糖体生物发生机制及其运动适应 被引量:1

Mechanism of ribosome biogenesis and exercise adaptation of skeletal muscle hypertrophy
下载PDF
导出
摘要 背景:研究证据表明,骨骼肌收缩活动可以诱发核糖体生物发生,从而对骨骼肌质量的控制起重要作用。目的:概述骨骼肌肥大与核糖体生物发生的主要机制,骨骼肌核糖体生物发生的上游调控信号,以及运动对核糖体生物发生的影响,探讨运动诱导骨骼肌肥大的核糖体生物发生机制。方法:检索CNKI、万方、Pub Med等数据库关于运动、骨骼肌肥大及核糖体生物发生的相关研究,中文检索词为"运动,抗阻训练,骨骼肌肥大,蛋白质合成,核糖体生物发生"等;英文检索词为"exercise,resistance training,skeletal muscle hypertrophy,protein synthesis,ribosome biogenesis"等,检索时限为1999至2019年,按照纳入标准和排除标准对搜索文献进行筛选。结果与结论:(1)核糖体生物发生作为翻译能力的主要来源,在肌肉生长中起着重要的作用;(2)单次的抗阻运动就可以对骨骼肌核糖体生物发生产生影响;长期抗阻运动会增加成熟核糖体RNA的丰度,导致总RNA的浓度增加,从而促进骨骼肌的生长;(3)核糖体生物发生可能是调节抗阻训练诱导的骨骼肌肌肉肥大的关键分子机制;(4)中等运动量抗阻训练就可以诱导骨骼肌肥大的适应性增强,这种肥大与总RNA量的依赖性调节有关,表明核糖体的生物发生调节了训练量与肌肉肥大的量效关系。 BACKGROUND: Research evidence shows that skeletal muscle contractile activity can induce ribosomal biogenesis, which plays an important role in the control of skeletal muscle mass. OBJECTIVE: To review the main mechanism of ribosome biogenesis in skeletal muscle hypertrophy, upstream regulatory signals of ribosomal biogenesis in skeletal muscle, and effect of exercise on ribosomal biogenesis, and to explore the ribosome biogenesis mechanism of exercise-induced skeletal muscle hypertrophy.METHODS: Relevant studies about exercise, skeletal muscle hypertrophy and ribosome biogenesis in CNKI, Wanfang, and Pub Med databases were searched. The key words were "exercise, resistance training, skeletal muscle hypertrophy, protein synthesis, ribosome biogenesis" in English and Chinese. Relevant literatures published from 1999 to 2019 were searched and screened according to inclusion and exclusion criteria. RESULTS AND CONCLUSION:(1) Ribosome biogenesis as a main source of translational capacity plays an important role in muscle growth.(2) A single bout of resistance exercise can promote the ribosome biogenesis. However, cumulative bouts of resistance exercise eventually lead to the accumulation of mature r RNAs, leading to increased concentration of total RNA, which promote the growth of skeletal muscle.(3) Ribosome biogenesis may be the key molecular mechanism for the regulation of skeletal muscle hypertrophy induced by resistance training.(4) Moderate-volume resistance training led to adaptations to resistance training. This hypertrophy was associated with volume-dependent regulation of total RNA. This suggests that ribosomal biogenesis regulates the dose-effect relationship between training volume and muscle hypertrophy.
作者 杨军 张少生 Yang Jun;Zhang Shaosheng(Guangzhou Medical University,Guangzhou 511436,Guangdong Province,China)
机构地区 广州医科大学
出处 《中国组织工程研究》 CAS 北大核心 2020年第27期4383-4388,共6页 Chinese Journal of Tissue Engineering Research
关键词 运动 抗阻训练 骨骼肌肥大 蛋白质合成 核糖体生物发生 exercise resistance training skeletal muscle hypertrophy protein synthesis ribosome biogenesis
  • 相关文献

参考文献3

二级参考文献40

  • 1史仍飞,危小焰.机械生长因子(MGF)与运动[J].体育科学,2006,26(6):90-92. 被引量:10
  • 2Bodine SC, Stitt TN, Gonzalez M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001 ; 3(11 ): 1014-1019.
  • 3Pallafacchina G, Calabria E, Serrano AL, et al. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A. 2002; 99(14):9213-9218.
  • 4Nader GA, McLoughlin T J, Esser KA.mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators.Am J Physiol Cell Physiol. 2005; 289(6):C1457-1465.
  • 5Stokoe D, Stephens LR, Copeland T, et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997; 277(5325):567-570.
  • 6Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000; 103(2):253-262.
  • 7Ohanna M, Sobering AK, Lapointe T, et al.Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat Cell Biol. 2005; 7(3):286-294.
  • 8Bodine SC.mTOR signaling and the molecular adaptation to resistance exercise.Med Sci Sports Exerc. 2006; 38(11):1950-1957.
  • 9Nave BT, Ouwens M, Withers D J, et al.Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation.Biochem J. 1999; 344 Pt 2:427-431.
  • 10Hornberger TA, Stuppard R, Conley KE, et at.Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J. 2004; 380(Pt 3):795-804.

共引文献16

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部