期刊文献+

基于动态滑动模型的加速度传感器数据在线预测方法研究 被引量:6

Research on on-line prediction of acceleration sensordata based on dynamic sliding model
原文传递
导出
摘要 加速度传感器输出值精确测量是相关数据预测的必要前提,为补偿制造工艺和测量环境影响带来的加速度传感器输出误差并准确预测加速度传感器输出数值,提出了基于自适应归一化奇异谱和神经网络的加速度传感器误差补偿及数值预测方法。首先分析加速度传感器输出误差产生的原因;然后根据奇异熵定阶去噪的方法提出了自适应奇异谱方法用于加速度传感器误差自适应补偿;最后选用基于滑动窗的径向基(radical basis function, RBF)神经网络作为加速度传感器输出数值预测方法,并用粒子群优化算法优化RBF神经网络的初始参数。实验结果表明,自适应奇异谱方法可以有效补偿加速度传感器输出误差,并可以选定不同的自适应参数以满足不同误差需求,并且粒子群算法优化的RBF神经网络可以有效预测加速度传感器输出数值。 Accurate measurement of the acceleration sensor output value is a necessary prerequisite for the prediction of relevant data. In order to compensate the output error of accelerometer sensor caused by manufacturing process and measurement environmental impact and accurately predict the output value of accelerometer sensor, an acceleration sensor error compensation and numerical prediction method based on adaptive singular spectrum and neural network is proposed. Firstly, the cause of the output error of the acceleration sensor is analyzed. Secondly, an adaptive singular spectral method is proposed for the acceleration sensor error compensation according to the singular entropy order determination denoising method. Finally, the radial basis function(RBF) neural network is selected as the numerical prediction method for the acceleration sensor output data, and the particle swarm optimization algorithm is used to optimize the initial parameters of the RBF neural network. The experimental results show that the adaptive singular spectral method can effectively compensate the output error of the acceleration sensor, and different adaptive parameters can be selected to meet different error requirements, and the RBF neural network optimized by the particle swarm optimization algorithm can effectively predict the output value of the acceleration sensor.
作者 仝战营 张继阳 Tong Zhanying;Zhang Jiyang(Henan Institute of Technology,Xinxiang 453003,China)
机构地区 河南工学院
出处 《电子测量与仪器学报》 CSCD 北大核心 2020年第2期158-164,共7页 Journal of Electronic Measurement and Instrumentation
基金 河南省高等学校重点科研项目(16A470019)资助。
关键词 自适应奇异谱 神经网络 加速度传感器 误差补偿 预测方法 adaptive singular spectrum neural networks acceleration sensor error compensation prediction method
  • 相关文献

参考文献6

二级参考文献65

  • 1罗晶,陈平.热式质量流量计测量电路设计[J].仪表技术与传感器,2004(10):29-30. 被引量:19
  • 2江军,孙焕新,鲍际平.空气湿度对热线式空气质量流量计误差的影响[J].内蒙古林业调查设计,2005,28(2):55-56. 被引量:2
  • 3居钰生,金兴才,缪雪龙,夏少华.我国燃油喷射系统行业现状、任务与对策[J].现代车用动力,2007(3):1-8. 被引量:8
  • 4Wang W N, Cai D, Wang L, Huang Q H, Xu X M, Li X L. Synthesized computational aesthetic evaluation of photos. Neurocomputing, 2016, 172:244-252.
  • 5Tong H H, Li M J, Zhang H J, He J R, Zhang C S. Clas- sification of digital photos taken by photographers or home users. In: Proceedings of the 5th Pacific Rim Conference on Multimedia. Tokyo, Japan: Springer, 2004. 198-205.
  • 6Datta R, Joshi D, Li J, Wang J Z. Studying aesthetics in photographic images using a computational approach. In:Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 288-301.
  • 7Wang W N, Zhao W J, Cai C J, Huang J X, Xu X M, Li L. An efficient image aesthetic analysis system using Hadoop. Signal Processing: Image Communication, 2015, 39:499-508.
  • 8Ke Y, Tang X O, Jing F. The design of high-level features for photo quality assessment. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. New York, USA: IEEE, 2006. 419-426.
  • 9Tang X O, Luo W, Wang X G. Content-based photo quality assessment. IEEE Transactions on Multimedia, 2013, 15(8): 1930-1943.
  • 10Lu X, Lin Z, Jin H L, Yang J C, Wang J Z. Rating im- age aesthetics using deep learning. IEEE Transactions on Multimedia, 2015, 17(11): 2021-2034.

共引文献357

同被引文献82

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部