期刊文献+

光纤通信波段微光学件的抗反射纳米结构 被引量:7

Nanostructured Antireflection Micro-Optics in the Optical Fiber Communication Band
原文传递
导出
摘要 设计了一种光纤通信波段的纳米抗反射结构。采用有限时域差分(FDTD)优化模拟算法,寻找在1250nm到1650nm波长范围内能够显著降低反射率的蛾眼纳米结构。开发了一种多目标优化算法,将宽带反射率在0°到30°的入射角范围内进行了优化。对结构中纳米柱的几何排列、半径、高度和周期组成的参数空间进行了完整的搜索。在波长为1550nm时,仿真得到接近零的反射率为0.012%。对该设计采用了纳米压印进行实验验证,对于最佳设计的样品,在1550nm处测量获得了低至0.157%的反射率。分析了模拟结果与实验测量之间的差异,并结合反射率对波长的变化进行了分析。 In this study,we design nanostructured antireflection multiwavelength micro-optics that can be used in fiber-optic communication systems.The finite-difference time-domain method was used to search for a moth-eye nanostructure that exhibited a significantly reduced reflectivity in the wavelength range from 1250to 1650nm.Further,a multiobjective optimization algorithm was developed for optimizing the wideband reflectance at an oblique incidence from 0°to 30°;this optimization was implemented for a parameter space in which the geometrical arrangement,radius,height,and period of the nanopillars could be included.Subsequently,at a wavelength of 1550nm,a near-zero reflectance(0.012%)was obtained via simulation,whereas an experimental value of 0.157%was obtained when the samples fabricated based on the optimal design was used.Furthermore,this discrepancy between the simulated and experimental results was analyzed by considering the change in the reflective index with the wavelength.
作者 皮顿 单子豪 吴兴坤 Pi Dun;Shan Zihao;Wu Xingkun(State Key Laboratory of Modern Optical Instrumentation,College of Optical Science and Engineering,Zhejiang University,Hangzhou,Zhejiang 310027,China;College of Optical Science and Engineering,Zhejiang University,Hangzhou,Zhejiang 310027,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2020年第6期136-144,共9页 Acta Optica Sinica
基金 国家自然科学基金(61775189)。
关键词 光学设计 纳米结构 抗反射 微光学件 光通信 optical devices nanostructure antireflection micro-optics optical communications
  • 相关文献

参考文献4

二级参考文献28

  • 1C. F. R. Mateus, M. C. Y. Huang, Y. Deng et al.. Ultrabroadband mirror using low index cladded subwavelength grating[J]. IEEE Photon. Technol. Lett, 2004, 16 ( 2 ) : 518-520.
  • 2C. F. R. Mateus, M. C. Y. Huang, L. Chen et al.. Broad band mirror (1.12-1.62m) using a subwavelength grating[J]. IEEE Photon. Tech. Lett, 2004, 16(7): 1676-1678.
  • 3M. C. Y Huang, Y. Zhou, C. J. Chang-Hasnain. A surface emitting laser incorporating a high index contrast subwavelength grating[J]. Nature Photonics, 2007, 1: 119-122.
  • 4Y. Ding, R. Magausson. Doubly-resonant single-layer bandpass optical filters[J]. Opt. Lett., 2004, 29(10): 1135-1137.
  • 5Xiaoyong Fu, Kui Yi, Jianda Shao et al.. Design of singlematerial guided mode resonance filter [J]. Chin. Opt. Lett. , 2009, 7(1): 9-11.
  • 6A. G. Lopez, H. G. Graighead. Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating[J]. Opt. Lett., 1998, 23(20): 1627-1629.
  • 7RongChung tyan, PangChen sun, Axel Scherer et al.. Polarizing beam splitter based on the anisotropic spectral refleetivity characteristic of form-birefringent multilayer gratings [J]. Opt. Lett. , 1996, 21(10): 761-763.
  • 8Deer Yi, Yingbai Yan, Haitao Liu et al.. Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain[J]. Opt. Lett. , 2004,, 29(7): 754-756.
  • 9M. G. Moharam, T. K. Gaylord. Rigorous coupled-wave analysis of planar grating diffraction[J]. J. Opt. Soc. Am., 1981, 71(7): 811-818.
  • 10N. P. K. Cotter, T. W. Preist, J. R. Sambles. Scatteringmatrix approach to multilayer diffraction[J]. J. Opt. Soc. Am. A, 1995, 12(5): 1097-1103.

共引文献89

同被引文献49

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部