期刊文献+

结合项目流行度加权的协同过滤推荐算法 被引量:17

Collaborative filtering recommendation algorithm combined with item popularity weighting
下载PDF
导出
摘要 针对传统协同过滤算法中存在的流行度偏差问题,提出一种结合项目流行度加权的协同过滤推荐算法。在项目协同过滤算法的基础上,分析项目流行度和流行度差异对相似度的影响;设置流行度阈值,对大于该阈值的流行项目设计惩罚权重,降低其对项目间相似度的贡献。通过在MovieLens 1M和Epinion数据集上进行实验验证和对比,结果表明,所提算法的预测准确度和覆盖率均优于传统算法,有效提高了推荐的多样性和新颖性,一定程度上缓解了流行度偏差问题。 Aiming at the popularity bias problem in traditional collaborative filtering algorithms,this paper proposed a collaborative filtering recommendation algorithm combined with item popularity weighting.On the basis of the item collaborative filtering algorithm,it analyzed the influence of item popularity and popularity difference between items on similarity.This algorithm used the item popularity and popularity difference to set the penalty weight functions and adjusted the similarity between popularity items when the item popularity was greater than the threshold.The experiments on the MovieLens 1M and Epinion datasets show that the proposed algorithm has better prediction accuracy and coverage rate than traditional algorithms,which effectively improves the diversity and novelty of recommendations,and alleviates the popularity bias problem.
作者 魏甜甜 陈莉 范婷婷 吴小华 Wei Tiantian;Chen Li;Fan Tingting;Wu Xiaohua(School of Information Science&Technology,Northwest University,Xi’an 710127,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第3期676-679,共4页 Application Research of Computers
关键词 协同过滤 相似性度量 流行度偏差 项目流行度 collaborative filtering similarity measure popularity bias item popularity
  • 相关文献

参考文献2

二级参考文献11

  • 1J Breese, D Hecherman, C Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In: Proc of the 14th Conf on Uncertainty in Artificial Intelligence (UAI98) . San Francisco,CA: Morgan Kaufmann, 1998. 43~52
  • 2B Sarwar, G Karypis, J Konstan, et al. Item-based collaborative filtering recommendation algorithms. In: Proc of the 10th Int'l World Wide Web Conf. New York: ACM Press, 2001. 285~295
  • 3A Dempster, N Laird, D Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977, 39(1): 1~38
  • 4B Thiesson, C Meek, D Chickering, et al. Learning mixture of DAG models. Microsoft Research, Tech Rep: MSR-TR-97-30,1997
  • 5B Sarwar, G Karypis, J Konstan, et al. Analysis of recommendation algorithms for E-commerce. In: Proc of the 2nd ACM Conf on Electronic Commerce. New York: ACM Press,2000. 158~167
  • 6J Wolf, C Aggarwal, K-L Wu, et al. Horting hatches an egg: A new graph-theoretic approach to collaborative filtering. In: Proc of the 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining. New York: ACM Press, 1999. 201~212
  • 7C C Aggarwal. On the effects of dimensionality reduction on high dimensional similarity search. In: Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symp on Principles of Database Systems. New York: ACM Press, 2001. 256~266
  • 8B Kitts, D Freed. Cross-sell: A fast promotion-tunable customeritem recommendation method based on conditionally independent probabilities. In: Proc of ACM SIGKDD2000. New York: ACM Press, 2000. 437~446
  • 9张引,张斌,高克宁,郭朋伟,孙达明.面向自主意识的标签个性化推荐方法研究[J].电子学报,2012,40(12):2353-2359. 被引量:8
  • 10赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140

共引文献113

同被引文献114

引证文献17

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部