期刊文献+

Underflow concentration prediction model of deep-cone thickener based on data-driven 被引量:1

Underflow concentration prediction model of deep-cone thickener based on data-driven
原文传递
导出
摘要 The underflow concentration prediction of deep-cone thickener is a difficult problem in paste filling. The existing prediction model only determines the influence of some parameters on the underflow concentration, but lacks a prediction model that comprehensively considers the thickening process and various factors. This paper proposed a model which analyzed the variation of the underflow concentration from a number of influencing factors in the concentrating process. It can accurately predict the underflow concentration. After preprocessing and feature selection of the history data set of the deep-cone thickener, this model uses the eXtreme gradient boosting(XGBOOST) in machine learning to deal with the relationship between the influencing factors and the underflow concentration, so as to achieve a more comprehensive prediction of the underflow concentration of the deep-cone thickener. The experimental results show that the underflow concentration prediction model based on XGBOOST shows a mean absolute error(MAE) of 0.31% and a running time of 1.6 s on the test set constructed in this paper, which fully meet the demand. By comparing the following three classical algorithms: back propagation(BP) neural network, support vector regression(SVR) and linear regression, we further verified the superiority of XGBOOST under the conditions of this study. The underflow concentration prediction of deep-cone thickener is a difficult problem in paste filling. The existing prediction model only determines the influence of some parameters on the underflow concentration, but lacks a prediction model that comprehensively considers the thickening process and various factors. This paper proposed a model which analyzed the variation of the underflow concentration from a number of influencing factors in the concentrating process. It can accurately predict the underflow concentration. After preprocessing and feature selection of the history data set of the deep-cone thickener, this model uses the eXtreme gradient boosting(XGBOOST) in machine learning to deal with the relationship between the influencing factors and the underflow concentration, so as to achieve a more comprehensive prediction of the underflow concentration of the deep-cone thickener. The experimental results show that the underflow concentration prediction model based on XGBOOST shows a mean absolute error(MAE) of 0.31% and a running time of 1.6 s on the test set constructed in this paper, which fully meet the demand. By comparing the following three classical algorithms: back propagation(BP) neural network, support vector regression(SVR) and linear regression, we further verified the superiority of XGBOOST under the conditions of this study.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2019年第6期63-72,共10页 中国邮电高校学报(英文版)
基金 supported by the National Key Research and Development Program of China(2016YFB0700500) the National Science Foundation of China(61572075,61702036) Fundamental Research Funds for the Central Universities(FRF-TP-17-012A1) China Postdoctoral Science Foundation(2017M620619)。
关键词 PASTE FILLING underflow concentration machine learning XGBOOST PREDICTION model paste filling underflow concentration machine learning XGBOOST prediction model
  • 相关文献

参考文献8

二级参考文献110

共引文献314

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部