期刊文献+

基于物联网离散模型的能效关键指标预测 被引量:1

Prediction of Key Indicators of Energy Efficiency Based on Discrete Model of Internet of Things
下载PDF
导出
摘要 基于"物联网+"的人工智能算法使制造业发生了翻天覆地的变化。采用由设备层、任务层和辅助生产层三层结构构建的能耗结构,详细描述了离散制造系统层的数学模型,通过对模型的分析,发现设备层为耗能主体,且其关键参数无法直接获取,基于此,从设备层能耗模型切入,通过测量设备总功率与主轴实时功率,采用基于变遗忘因子算法来估计设备加工时的附加载荷损数系数,结合能耗集成化模型和预测出的附加载荷损耗系数用于能耗量化分析。 The AI algorithm based on "Internet of Things+" has brought about earth-shaking changes in the manufacturing industry. The energy consumption structure composed of equipment layer, task layer and auxiliary production layer is adopted, and the mathematical model of discrete manufacturing system layer is described in detail. Through analysis of the model, it is found that the equipment layer is the main energy consuming body, and its key parameters cannot be directly obtained. Based on this, starting from the equipment layer energy consumption model, by measuring the total power of equipment and the real-time power of the spindle, the additional load loss coefficient during equipment processing is estimated based on the variable forgetting factor algorithm, and the energy consumption integrated model and the predicted additional load loss coefficient are used for energy consumption quantitative analysis.
作者 潘琛 杨瑞丽 PAN Chen;YANG Ruili(School of Information and Electronic Engineering,Shangqiu Institute of Technology,Shangqiu He nan 476000,China)
出处 《微处理机》 2020年第3期24-29,共6页 Microprocessors
基金 河南省高等学校重点科研项目(20B520026)。
关键词 物联网+ 离散制造 能耗模型 变遗忘因子算法 能耗量化分析 Internet of Things+ Discrete manufacturing Energy consumption VFF algorithm Quantitative analysis of energy consumption
  • 相关文献

参考文献3

二级参考文献64

  • 1曹华军,刘飞,阎春平,李聪波.制造过程环境影响评价方法及其应用[J].机械工程学报,2005,41(6):163-167. 被引量:33
  • 2TAYLOR P. Worldwide trends in energy use and efficiency, key insights from lEA indicator analysis [R]. Paris: Intemational EnergyAgency(IEA), 2008.
  • 3THOLLANDER P, KARLSSON M, SDERSTRM M, et al. Reducing industrial energy costs through energy-efficiency measures in a liberalized European electricity market: Case study of a Swedish iron foundry [J]. Applied Energy, 2005, 81(2): 115-126.
  • 4ROI-IDIN P, THOLLANDER P. Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden[J]. Energy, 2006, 31(12): 1836-1844.
  • 5MIT. Environmentally Benign Manufacturing [EB/OL]. [2009-10-08]. http: //www.web.mit.edu/ebm/index.html.
  • 6RAHIMIFARD S, SEOWA Y, CHILDS T. Minimizing embodied product energy to support energy efficient manufacturing[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1): 25-28.
  • 7DRAGANESCU F, GHEORGHE M, DOICIN C. Models of machine tool efficiency and specific consumed energy[J]. Journal of Materials Processing Technology, 2003, 141(1): 9-15.
  • 8MASHAEI M, LENNARTSON B. Energy reduction in a pallet-constrained flow shop through on-off control of idle machines[J]. IEEE Transactions on Automation Science and Engineering, 2013, 10(1). 45-56.
  • 9BUNSE K, VODICKA M. Managing energy efficiency in manufacturing processes - implementing energy performance in production information technology systems[J]. IFIP Advances in Information and Communication Technology, 2010, 328: 260-268.
  • 10TRIDECH S, CHENG K. Low carbon manufacturing.. Characterization, theoretical models and implementation [J]. International Journal of Manufacturing Research, 2011, 6(2): 110-121.

共引文献22

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部