期刊文献+

一种基于改进卡尔曼滤波的GPS/BDS/SINS深组合定位算法 被引量:9

A GPS/BDS/SINS Deep Positioning Algorithm Based on Improved Kalman Filter
下载PDF
导出
摘要 针对在卫星信号受干扰严重的复杂地貌环境中,由于可见卫星数目较少、卫星信号质量差,导致卫星定位导航精度低的问题,提出了GPS/BDS/SINS深组合定位算法。该算法在GPS/BDS伪距组合定位的基础上,引入惯性器件测量值进行惯导辅助组合定位,借助渐消卡尔曼滤波,通过在线估计量测噪声和系统噪声,进一步降低定位误差,输出高精度定位结果。实验结果表明,本文所述算法相较于传统组合定位算法,定位精度高且计算效率高,具有一定的理论意义和实用价值。 In complex geomorphic environments where satellite signals are severely disturbed,satellite positioning and navigation accuracy is low owing to fewer visible satellites and poor satellite signal quality.To solve this problem,a GPS/BDS/inertial navigation deep positioning algorithm is proposed.Based on GPS/BDS pseudo-range combined positioning,this algorithm introduces inertial device measurement values for inertial navigation assisted combined positioning.With the help of fade-out Kalman filtering,it estimates the measurement noise and system noise online to further reduce positioning errors and output high accuracy positioning results.Experimental results show that the algorithm described in this paper has higher theoretical accuracy and higher computational efficiency than traditional combined localization algorithms,and has certain theoretical significance and practical value.
作者 陈柯勋 邱伟 CHEN Kexun;QIU Wei(College of Information and Computer, Taiyuan University of Technology, Taiyuan 030600, China;Beijing Institute of Strength & Environment Engineering, Beijing 100076, China)
出处 《太原理工大学学报》 CAS 北大核心 2020年第3期446-450,共5页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(518050346)。
关键词 全球卫星导航系统 惯性导航系统 组合定位 卡尔曼滤波 GNSS inertial navigation system combined location kalman filtering
  • 相关文献

参考文献4

二级参考文献36

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2丁文娟,李岁劳,熊伟.捷联惯导系统/里程计自主式车载组合导航系统研究[J].计测技术,2006,26(1):14-16. 被引量:13
  • 3徐慧娟,吴美平,罗兵.EKF和UKF在INS/GPS组合导航中的应用分析[J].航天控制,2006,24(6):7-10. 被引量:15
  • 4杨波,秦永元,柴艳.UKF在INS/GPS直接法卡尔曼滤波中的应用[J].传感技术学报,2007,20(4):842-846. 被引量:24
  • 5Skog I, Handel P. In-car positioning and navigation technologies-a survey [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10( 1 ) :4 - 21.
  • 6Georgy J, Karamat T, Iabal U, et al. Enhanced MEMS-IMU/ odometer/GPS integration using mixture particle filter [ J]. GPS Solutions, 2011, 15(3) :239 -252.
  • 7Georgy J, Noureldin A, Korenberg M J, et al. Modeling the stochastic drift of a MEMS-based gyroscope in gyro/odometer/GPS integrated navigation [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11 (4) :856 - 872.
  • 8Duong T T, Huang Y W, Chiang K W. Improving the accuracy ofmems IMU/GPS POS systems for land-based mobile mapping system by using tightly enupled integration and auxiliary odometer [ C] //31st Asian Conference on Remote Sensing. Tokyo, Japan: Asian Association on Remote Sensing, 2010:515 -520.
  • 9Wang W, Wang D. Land vehicle navigation using odometry/INS! vision integrated system [ C ] //2008 IEEE International Conference on Cybernetics and Intelligent Systems. Chengdu: IEEE Computer Society, 2008:754 - 759.
  • 10Kim S B, Bazin J C, Lee H K, et al. Ground vehicle navigation in harsh urban conditions by integrating inertial navigation system, global positioning system, odometer and vision data[ J]. IET Radar, Sonar & Navigation, 2011, 5 ( 8 ) :814 - 823.

共引文献74

同被引文献97

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部