期刊文献+

利用自适应选择算子结合遗传算法的机器人路径规划方法 被引量:23

Robot motion planning based on adaptive selection operator combined with genetic algorithm
下载PDF
导出
摘要 在二维复杂环境中,为了避免机器人运动规划中可能出现的局部陷阱和过早收敛问题,提出一种改进的元启发式算法--自适应遗传算法。首先,利用随机Dijkstra算法创建初始种群;然后,在遗传算法的每一代中,改进所创建的路径,并用自适应算子替代常规选择算子;最后,通过搜索过程中的反馈信息,可以令自适应选择算子在整个算法运行中恰当地控制选择压力。为了验证所提方法的有效性,在MATLAB中进行了仿真实验,并将所提方法与另外两种典型方法进行了对比。实验结果表明,提出的方法可以有效避免路径规划中的局部收敛问题,且在复杂环境中也可以产生可行路径。 In order to avoid local-trap and premature convergence of robot motion planning in 2 D complex environments,this paper proposed an improved metaheuristics-adaptive genetic algorithm( AGA). Firstly,it adopted the random Dijkstra algorithm to create initial population. Secondly,in each generation of the GA,it improved the created paths,and replaced the conventional selection operator in GA with an adaptive one. Finally,by using feedback information of the search process,the adaptive selection operator could control the selective pressure appropriately throughout the algorithm. To validate the effectiveness of the proposed method,it compared the algorithm with two other methods in MATLAB. The results show that the proposed method can avoid the local convergence problem in motion planning,and can generate feasible path in complex environments.
作者 易欣 郭武士 赵丽 Yi Xin;Guo Wushi;Zhao Li(Sichuan Equipment Manufacturing Industry Robot Application Technology Engineering Laboratory,Deyang Sichuan 618000,China;School of Software Engineering,Shanxi University,Taiyuan 030013,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第6期1745-1749,共5页 Application Research of Computers
基金 四川省科技厅科技计划重点研发项目(2018GZ0299)。
关键词 移动机器人 运动规划 遗传算法 自适应选择算子 mobile robot motion planning genetic algorithm(GA) adaptive selection operator
  • 相关文献

参考文献10

二级参考文献70

  • 1安云.广州大学城智能交通管理系统及实施的研究[J].广东公安科技,2004,12(3):60-63. 被引量:3
  • 2岳龙旺,许天春,贠今天.“妙手”系统机械结构设计与优化[J].机器人,2006,28(2):154-159. 被引量:8
  • 3王海英,蔡向东,尤波,张礼勇.基于遗传算法的移动机器人动态路径规划研究[J].传感器与微系统,2007,26(8):32-34. 被引量:11
  • 4Wang Chun-Miao, Soh Y.C., Wang Han, Wang Hui. A hierarchical genetic algorithm for path planning in a static environment with obstacles. In: Proceedings of the IEEE CCECE 2002, 2002, 3: 1652~1657
  • 5D'Amico A., Ippoliti G., Longhi S.A.. Radial basis function networks approach for the tracking problem of mobile robots. In: Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2001, 1: 498~503
  • 6Weerayuth N., Chaiyaratana N.. Closed-loop time-optimal path planning using a multi-objective diversity control oriented genetic algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2002, 6: 7
  • 7Bruce J., Veloso M.. Real-time randomized path planning for robot navigation. In: Proceedings fo the IEEE/RSJ International Conference on Intelligent Robots and System, 2002, 3: 2383~2388
  • 8Laumond J P, Sekhavat S, Lamiraux F. Guidelines in Nonholonomic Mobile Planning for Mobile Robots[M]. Berlin: Springer-Verlag, 1998: 1-53.
  • 9Laumond J P, Jacobs P E, Taix M, et al. A Motion Planner for Nonholonomic Mobile Robots[J]. IEEE Trans on Robotics and Automations, 1999:577-593.
  • 10LaValle S M, Kuffner J J. Randomized Kinodynamic Planning[J]. Int J of Robotics Research, 2001, 20(5): 378-400.

共引文献190

同被引文献210

引证文献23

二级引证文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部