摘要
随着武器装备和作战样式的发展,无人机侦察已成为作战情报获取的重要方式.针对双无人机协同定位过程中存在的定位精度低与定位时间长的问题,提出了基于互模糊函数的时差频差联合定位优化方法.该方法通过优化互模糊函数来减少计算量,提高定位实时性,利用Monte Carlo法进行定位方程计算,提高求解精确度.仿真结果表明,本文方法能在对互模糊函数峰值判断精度影响很小的情况下,节省计算量,并准确判断出辐射源位置.这为海上无人机蜂群协同侦察定位实际应用提供了参考.
With the development of the weaponry and the combat mode,unmanned aerial vehicle(UAV)reconnaissance has become an important way to obtain operational intelligence.Aiming at the problems of low positioning accuracy and long positioning time in the cooperative process of dual UAVs,this paper proposes a time-frequency-difference joint location optimization method based on cross ambiguity function(CAF).This method optimizes the cross ambiguity function to reduce the computation and improve the real-time positioning capability,and also uses Monte Carlo method to calculate the positioning equations to improve the solution accuracy.The simulation results show that the proposed method can reduce the calculation amount and accurately determine the location of the radiation source with a very little influence on CAF accuracy of the peak value,thus providing a reference for the practical application of marine UAV swarm cooperative reconnaissance and positioning.
作者
朱闽
康阳
葛培
缪列昌
ZHU Min;KANG Yang;GE Pei;MIU Liechang(Army Artillery and Air Defense Academy,Hefei 230031,China;Air Force Early Warning Academy,Wuhan 430019,China)
出处
《空军预警学院学报》
2020年第1期46-50,共5页
Journal of Air Force Early Warning Academy
关键词
双无人机协同侦察
无源定位
互模糊函数
几何精度因子
dual-UAV collaborative reconnaissance
passive location
cross ambiguity function(CAF)
geometric dilution of precision(GDOP)