期刊文献+

FCM改进方法在图像分割中的知识发现 被引量:1

Research on Knowledge Discovery in Image Segmentation Based on Improved Method of FCM
下载PDF
导出
摘要 考虑到图像存在异常像素,将邻域因素考虑在内对模糊C-均值聚类算法(FCM)和异常像素检测算法(APD)提出了改进。首先,提出了邻域因素的邻域-FCM(N-FCM),然后,提出了模糊异常像素检测算法(Fuzzy-APD)。实验过程中,选择噪声图像、彩色图像作为实验图像,对FCM和N-FCM算法进行性能比较,证实相比于FCM算法,N-FCM算法的收敛性明显提高,图像分割的正确率进一步改善;同时从图像中获取部分像素进行异常像素检测,实验证实相比于异常像素检测,Fuzzy-APD准确性更高。 Considering the existence of abnormal pixels in images,we take neighborhood factors into account,and propose the improved algorithms for both fuzzy C-means clustering(FCM)used in image segmentation and abnormal pixel detection(APD).Firstly,we proposed a neighborhood-fuzzy C-means clustering algorithm(N-FCM)about neighborhood factors,and then we proposed a fuzzy-APD algorithm for detecting abnormal pixels.During the experiment,noise images and color images were selected as experimental images.The performance comparison between FCM algorithm and N-FCM algorithm was carried out.It is confirmed that the convergence of N-FCM algorithm is significantly improved comparing with FCM algorithm,and accuracy of image segmentation is further improved.Meanwhile,some pixels are obtained from the image for abnormal pixel detection.Experiments show that the accuracy of the fuzzy abnormal pixel detection algorithm is higher than that of abnormal pixel detection.
作者 汪克峰 钱进 李仁璞 WANG Kefeng;QIAN Jin;LI Renpu(School of Computer Engineering,Jiangsu University of Technology,Changzhou 213001,Jiangsu,China)
出处 《实验室研究与探索》 CAS 北大核心 2020年第3期55-61,共7页 Research and Exploration In Laboratory
基金 江苏省自然科学基金项目(BK20161199)。
关键词 模糊C-均值聚类算法 异常像素检测 图像分割 邻域因素 fuzzy C-means clustering algorithm abnormal pixel detection image segmentation neighborhood factors
  • 相关文献

参考文献8

二级参考文献126

  • 1唐鹏,高琳,盛鹏.基于动态形状的红外目标提取算法[J].光电子.激光,2009,20(8):1049-1052. 被引量:3
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3陶文兵,金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):110-119. 被引量:58
  • 4Pal N R, Pal S K. A review on image segmentation tech- niques. Pattern Recognition, 1993, 26(9): 1277-1294.
  • 5Veksler O. Efficient Graph-based Energy Minimization Methods in Computer Vision [Ph.D. dissertation], Cornell University, USA, 1999.
  • 6Bhandarkar S M, Zhang H. A comparison of stochastic op- timization techniques for image segmentation. International Journal o? Intelligent Systems, 2000, 15(5): 441-476.
  • 7Wang J S, Swendsen R H. Cluster Monte Carlo algorithms. Physica A: Statistical Mechanics and Its Applications, 1990, 167(3): 565--578.
  • 8Tu Z W, Zhu S C. Image segmentation by data-driven Markov chain Conte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 657-673.
  • 9Barbu A, Zhu S C. Generalizing Swendsen-Wang to sam- pling arbitrary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1239-1253.
  • 10MarteUi A, An application of heuristic search methods to edge and contour detection. Communications of the ACM, 1976, 19(2): 73-83.

共引文献249

同被引文献15

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部