期刊文献+

四旋翼无人机仿人智能PID控制 被引量:9

Human Simulating Intelligent PID Control of Quadrotor UAV
下载PDF
导出
摘要 针对四旋翼无人机姿态控制的问题,提出一种仿人智能PID控制方法,根据此方法设计无人机姿态控制系统。通过对无人机飞行原理和动力学的理论分析建立无人机数学模型;在常规PID控制算法和仿人智能控制规则的基础上提出一种新的仿人智能PID控制方法,并将此方法应用于无人机的纵向控制通道,根据无人机在垂直方向运动的动态特性实时在线调整PID控制参数,并通过MATLAB软件进行仿真。仿真结果表明:上述仿人智能PID控制方法优于常规PID控制,能够满足良好的动态特性,也能够提高系统的稳定性和鲁棒性。 Aiming at the attitude control problem of quadrotor UAV, a human simulating intelligent PID control method was proposed, and the attitude control system of UAV was designed based on this method.The mathematical model of UAV was established through theoretical analysis of flight principle and dynamics of UAV.Based on conventional PID control algorithm and the human simulating intelligent control rules, a new human simulating intelligent PID control method was fused. This method was applied to the longitudinal control channel of UAV, and the PID control parameters were adjusted online in real time according to the dynamic characteristics of the vertical motion of UAV.The simulation was carried out by MATLAB software. The simulation results show that the human simulating intelligent PID control method is superior to conventional PID control method, which can satisfy the good dynamic characteristics and improve the stability and robustness of the system.
作者 王杰 袁亮 WANG Jie;YUAN Liang(College of Mechanical Engineering,Xinjiang University,Urumchi Xinjiang 830047,China)
出处 《机床与液压》 北大核心 2020年第10期149-153,共5页 Machine Tool & Hydraulics
基金 国家自然科学基金项目(61662075)。
关键词 四旋翼 仿人智能 PID算法 稳定性 鲁棒性 Quadrotor UAV Human simulating intelligent PID algorithm Stability Robustness
  • 相关文献

参考文献3

二级参考文献44

  • 1王美仙,李明,张子军.飞行器控制律设计方法发展综述[J].飞行力学,2007,25(2):1-4. 被引量:29
  • 2刘波,何清华,邹湘伏.无人机飞行控制技术初探[J].飞行力学,2007,25(2):5-8. 被引量:13
  • 3Xu Hao-jian, Maj Mirmirani. Robust adaptive sliding control for a class of MIMO nonlinear systems [ C ]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal ,Canada:AIAA ,2001 : 1-10.
  • 4Fan Yigang, Eugene M L, Frederick H A. Mixed H2/H∞ optional control for an elastic aircraft [ J ]. Journal of Guidance, Control, and Dynamics, 1996,19 ( 3 ) :650-655.
  • 5George Kukich ,James L Dolce. An expert system for simulating electric loads aboard space station[ R]. NASA TM- 103150,1990.
  • 6Babaei A R. Classical and fuzzy-genetic autopilot design for unmanned aerial vehicles [ J ]. Applied Soft Computing, 2011,11 ( 1 ) :365-372.
  • 7Sefer Kurnaz, Omer Cetin, Okyay Kaynak. Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles [ J ]. Journal of Intelligent Robot System, 2009,54 ( 1-3 ) :229-244.
  • 8Sung Kyung Hong. Fuzzy logic based closed-loop strap down attitude system for unmanned aerial vehicle [J]. Sensors and Actuators,2003,107(2) : 109-118.
  • 9Byoung S Kim, Athony J Calise. Nonlinear flight control using neural networks [ J ]. Journal of Guidance, Control, and Dynamics, 1997,20( 1 ) :22-25.
  • 10Harmon F G, Frank A A, Joshi S S. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network [ J ]. Neural Networks ,2005 ,18 ( 5-6 ) :772-780.

共引文献70

同被引文献98

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部