期刊文献+

基于人工神经网络的动力学参数辨识法 被引量:13

Dynamic parameter identification method based on artificial neural network
下载PDF
导出
摘要 针对传统最小二乘法辨识动力学模型精度不高的问题,结合深度学习方法,提出了一种基于人工神经网络的动力学参数辨识方法。使用线型整流单元(ReLU)作为神经网络的激活函数,使用RMSProp算法对神经网络权值进行迭代,使用Dropout方法防止过拟合。采用有限项傅里叶级数轨迹作为激励轨迹,对采集到的数据进行标准化处理及滤波处理。最后,对算法得到的模型进行比较验证。结果表明,本文提出的方法相对于传统方法有较高的精度,不需要对摩擦力进行建模,能够更好地应用于机器人模型控制系统。 The accuracy of traditional identification methods for dynamic parameters is limited.In order to solve this problem,a dynamic parameter identification method based on artificial neural network is proposed.Rectifier linear unit(ReLU)is used as the activation function of the neural network.RMSProp algorithm is used to iterate the weights of the neural network.Dropout method is used to prevent over-fitting.The finite-value Fourier series trajectory is used as the excitation trajectory,and the collected data is normalized and filtered.Finally,the torque calculated by the algorithm is compared and validated.The results show that the proposed method is more accurate than the traditional method and does not require modeling friction.The method can be better applied to the robot control system.
作者 杜其通 刘朝雨 闵剑 费燕琼 Du Qitong;Liu Zhaoyu;Min Jian;Fei Yanqiong(Research Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240)
出处 《高技术通讯》 EI CAS 北大核心 2020年第5期495-500,共6页 Chinese High Technology Letters
基金 国家自然科学基金(51875335) 国家重点研发计划(2017YFD0700602)资助项目。
关键词 神经网络 参数辨识 动力学 neural network parameter identification dynamics
  • 相关文献

参考文献5

二级参考文献48

  • 1糜玉林.高精度甚低速系统的模糊控制[J].机器人,2001,23(S1):619-622. 被引量:1
  • 2DUAN HaiBin 1 ,SHAO Shan 2 ,SU BingWei 3 &ZHANG Lei 41 State Key Laboratory of Science and Technology on Holistic Flight Control,School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191,China,2 Flight Control Department,Shenyang Aircraft Design and Research Institute,Shenyang 110035,China,3 Beijing Institute of Near Space Vehicle’s System Engineering,Beijing 100076,China,4Integration and Project Section,Air Force Equipment Academy,Beijing 100085,China.New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J].Science China(Technological Sciences),2010,53(8):2025-2031. 被引量:33
  • 3高明松,李素明,周卫东.应用人工蜂群算法辨识潜器参数[J].哈尔滨工程大学学报,2013,34(8):1023-1027. 被引量:4
  • 4叶建雄,张华.机器人焊缝跟踪的FUZZY-PID控制[J].焊接学报,2005,26(11):97-100. 被引量:10
  • 5Stoughton R, Arai T. A modified Stewart platform manipulator with improved dexterity [ J ]. IEEE Transactions on Robotics and Automation, 1993, 9(2) : 166 - 173.
  • 6Prashant Kumar Jamwal, Xie Shengquan, Aw K C. Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm [ J ]. Robotics and Autonomous Systems, 2009, 57 (10) : 1018 - 1027.
  • 7Kelaiaia R, Company O, Zaatri A. Multiobjective optimization of a linear Delta parallel robot [ J ]. Mechanism and Machine Theory, 2012, 50: 159- 178.
  • 8Takeda Y, Funabashi H, Ichimaru H. Development of spatial in-parallel actuated manipulators with six degrees of freedom with high motion transmissibility [ J ]. JSME Internation Journal, Series C, 1997, 40 (2) : 299 - 308.
  • 9Coppola G, Zhang Dan, Liu Kefu. A 6-DOF reconfigurable hybrid parallel manipulator [ J ]. Robotics and Computer-Integrated Manufacturing, 2014, 30(2): 99- 106.
  • 10Zhao Yongjie. Dynamic optimum design of a three translational degrees of freedom parallel robot while considering anisotropic property[ J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(4) : 100 - 112.

共引文献75

同被引文献117

引证文献13

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部