期刊文献+

逆拟变分不等式问题的相关研究

RESEARCH ON INVERSE QUASI-VARIATIONAL INEQUALITY PROBLEMS
下载PDF
导出
摘要 本文研究了Hilbert空间中逆拟变分不等式问题.利用不动点原理得到逆拟变分不等式问题解的存在性和唯一性.利用投影技巧,Wiener-Hopf方程和辅助原理技术分别给出求解逆拟变分不等式的迭代算法,并在一定条件下证明了算法的收敛性.最后通过间隙函数得到误差界.本文改进和推广了最近文献的一些相关结果. In this paper,we work on the inverse quasi-variational inequality problem in Hilbert spaces.By using the fixed point principle,we obtain the existence and uniqueness results for IQVI.By using projection technique,Wiener-Hopf equation and auxiliary principle technique,the iterative algorithms for solving IQVI are given,respectively,and the convergences of the algorithms are proved under certain conditions.Finally,the error bound for IQVI is also obtained according to the gap function,which improve and extend some related results in the recent literature.
作者 张从军 李杨 孙杰 王月虎 ZHANG Cong-jun;LI Yang;SUN Jie;WANG Yue-hu(School of Applied Mathematics,Nanjing University of Finance and Economics,Nanjing 210023,China;School of Management Science and Engineering,Nanjing University of Finance and Economics,Nanjing 210023,China)
出处 《数学杂志》 2020年第3期341-353,共13页 Journal of Mathematics
基金 江苏省高校自然科学研究面上项目(16KJB110009) 江苏高校哲学社会科学研究项目(2017SJB0238) 江苏省自然科学基金(BK20171041)。
关键词 逆拟变分不等式 Wiener-Hopf程 辅助原理 间隙函数 inverse quasi variational inequality Wiener-Hopf equation auxiliary principle gap function
  • 相关文献

参考文献1

二级参考文献16

  • 1Pang J S, FUkushima M. Quasi-variational inequalities, generalized Nash equilibria, and multi-leaderfollower games[J]. Computational Management Science, 2005, 2(1): 21-56.
  • 2Noor M A. On general quasi-variational inequalities[J]. Journal of King Saud University-Science, 2012, 24(1): 81-88.
  • 3Outrata J V, Zowe J.A Newton method for a class of quasi-variational inequalities[J]. Computational Optimization and Applications, 1995, 4(1): 5-21.
  • 4Harker P T. Generalized Nash games and quasi-variational inequalities[J]. European journal of Operational research, 1991, 54(1): 81-94.
  • 5Gupta R, Mehra A. Gap functions and error bounds for quasi variational inequalities[J]. Journal of Global Optimization, 2012, 53(4): 737-748.
  • 6Ricceri 0 N. On the covering dimension of the fixed point set of certain multifunctions[J]. Comment. Math. Univ, Carolin, 1991, 32(2): 281-286.
  • 7Michael E. Continuous selections I [J]. Annals of Mathematics, 1956,63: 361-382.
  • 8HE X, LIU H X. Inverse variational inequalities with projection-based solution methods[J]. European Journal of Operational Research, 2011, 208(1): 12-18.
  • 9Noor M A. On general quasi-variational inequalities[J].Journal of King Saud University-Science, 2012, 24(1): 81-88.
  • 10Outrata J V, Zowe J.A Newton method for a class of quasi-variational inequalities[J]. Computational Optimization and Applications, 1995, 4(1):5-21.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部