摘要
本文研究了Hilbert空间中逆拟变分不等式问题.利用不动点原理得到逆拟变分不等式问题解的存在性和唯一性.利用投影技巧,Wiener-Hopf方程和辅助原理技术分别给出求解逆拟变分不等式的迭代算法,并在一定条件下证明了算法的收敛性.最后通过间隙函数得到误差界.本文改进和推广了最近文献的一些相关结果.
In this paper,we work on the inverse quasi-variational inequality problem in Hilbert spaces.By using the fixed point principle,we obtain the existence and uniqueness results for IQVI.By using projection technique,Wiener-Hopf equation and auxiliary principle technique,the iterative algorithms for solving IQVI are given,respectively,and the convergences of the algorithms are proved under certain conditions.Finally,the error bound for IQVI is also obtained according to the gap function,which improve and extend some related results in the recent literature.
作者
张从军
李杨
孙杰
王月虎
ZHANG Cong-jun;LI Yang;SUN Jie;WANG Yue-hu(School of Applied Mathematics,Nanjing University of Finance and Economics,Nanjing 210023,China;School of Management Science and Engineering,Nanjing University of Finance and Economics,Nanjing 210023,China)
出处
《数学杂志》
2020年第3期341-353,共13页
Journal of Mathematics
基金
江苏省高校自然科学研究面上项目(16KJB110009)
江苏高校哲学社会科学研究项目(2017SJB0238)
江苏省自然科学基金(BK20171041)。