期刊文献+

基于Hadoop的电商大数据平台性能调优 被引量:1

Performance Optimization of E-commerce Big Data Platform Based on Hadoop
下载PDF
导出
摘要 为了提升电商大数据平台复杂数据操作性能,通过分析电商业务特点,从数据重新组织与平台参数调优两个方面对数据平台进行优化。在数据重新组织方面,使用ORC数据格式存储数据,并对数据表进行合理的分区、分桶;在平台参数调优方面,对业务涉及到的主要组件参数进行针对性调节。最后,通过搭建具有32个节点的Hadoop集群,并使用TPC-DS测试集进行仿真实验,验证调优思路及方法的有效性。结果表明,调优之后的平台性能大约是未进行任何优化平台的7.5倍,优化效果显著。 The goal of this paper is to improve the performance of e-commerce big data platforms for complex operation of data.In this paper,the characteristics of e-commerce are studied,and two approaches based on data reorganization and parameter optimization are carried out.Firstly,we use the ORC data format to store data and perform reasonable partitioning and binning of the data table.Second⁃ly,we make targeted adjustments to the main parameters of the main components involved in the business.The validity of aforemen⁃tioned methods is proved through TPC-DS benchmark simulated on a Hadoop cluster with 32 nodes.We find that after optimizations,the performance improves 7.5 times in comparison to that of a platform without any optimizations.
作者 马亚铭 陶利民 刘子琦 MA Ya-ming;TAO Li-min;LIU Zi-qi(Institute 503,China Academy of Space Technology,Beijing 100095,China)
出处 《软件导刊》 2020年第5期186-189,共4页 Software Guide
关键词 大数据平台 电子商务 HADOOP 性能调优 big data platform e-commerce Hadoop performance tuning
  • 相关文献

参考文献13

二级参考文献147

  • 1董新华,李瑞轩,周湾湾,王聪,薛正元,廖东杰.Hadoop系统性能优化与功能增强综述[J].计算机研究与发展,2013,50(S2):1-15. 被引量:70
  • 2张引,陈敏,廖小飞.大数据应用的现状与展望[J].计算机研究与发展,2013,50(S2):216-233. 被引量:379
  • 3陈志刚,许伟,曾志文.一种基于预测的动态负载均衡模型及算法研究[J].计算机工程,2004,30(23):87-89. 被引量:9
  • 4张普,王青,杨立光.网络计算机集群负载均衡机制的研究[J].计算机工程与设计,2006,27(16):2914-2917. 被引量:10
  • 5杨伟,朱巧明,李培峰,钱培德.基于时间序列的服务器负载预测[J].计算机工程,2006,32(19):143-145. 被引量:13
  • 6Chang F, Dean J, Ghemawat S, et al. Bigtable: a distributed storage system for structured data[C]//Proceedings of the 7th Symposium on Operating Systems Design and Imple- mentation (OSDI '06)--Volume 7, Seattle, WA, USA, Nov 6-8, 2006. Berkeley, CA, USA: USENIX Association, 2006: 15.
  • 7Cooper B F, Ramakrishnan R, Srivastava U, et al. PNUTS: Yahoo!' s hosted data serving platform[J]. Proceedings of the VLDB Endowment, 2008, 1(2): 1277-1288.
  • 8Carey M J, DeWitt D J, Kant C, et al. A status report on the 007 OODBMS benchmarking effort[C]//Proceedings of the 9th Annual Conference on Object-Oriented Programming Systems, Language and Applications (OOPSLA '94), Port- land, USA, Oct 23-27, 1994. New York, NY, USA: ACM, 1994: 414-426.
  • 9Cooper B F, Silberstein A, Tam E, et al. Benehmarking cloud serving systems with YCSB[C]//Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC '10), Indiana, USA, 2010. New York, NY, USA: ACM, 2010: 143-154,.
  • 10Pavlo A, Paulson E, Rasin A, et al. A comparison of ap- proaches to large-scale data analysis[C]//Proceedings of the 35th SIGMOD International Conference on Manage- ment of Data (SIGMOD '09), Providence, Rhode Island, USA, 2009. New York, NY, USA: ACM, 2009: 165-178.

共引文献164

同被引文献15

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部