期刊文献+

水下拖缆稳态运动的多目标优化研究 被引量:3

Multi-Objective Optimization of Steady-State Motion of Underwater Towline
下载PDF
导出
摘要 通过建立拖缆稳态运动的数学模型,给出运动控制方程,确定拖缆状态的6个参数,采用试验设计的方法在参数取值范围内选取样本点,对尾端拖曳深度和首端张力进行计算,建立尾端拖曳深度和首端张力的二阶多项式响应面模型。优化目标设定为尾端拖曳深度最大化和首端张力最小化,采用多目标遗传算法,给出Pareto最优解集。结果表明,参数在一定范围内,采用近似模型对拖缆优化,可以提高效率,能较为精确分析各参数对拖缆状态的影响。 Through the establishment of the mathematical model of the steady-state motion of the streamer,the motion control equation was given,and six parameters were determinated.The sample points were selected within the range of the parameters by the method of experimental design,and the tail drag depth and the head tension were calculated to obtain the response of the sample points,and the second-order polynomial response surface model of the tail drag depth and the head tension was established.Then,the maximum tail drag depth and the minimum head tension were taken as the optimization objectives,and the Pareto optimal solution set was given by using multi-objective genetic algorithm.The results show that within a certain range of parameters,the approximate model can be used to optimize the streamer,improve the efficiency,and accurately analyze the influence of parameters on the streamer state.
作者 王冲霄 刘忠乐 文无敌 张志强 赵苗 WANG Chongxiao;LIU Zhongle;WEN Wudi;ZHANG Zhiqiang;ZHAO Miao(College of Weapon Engineering, Naval University of Engineering, Wuhan 430033, China)
出处 《兵器装备工程学报》 CAS 北大核心 2020年第4期244-248,共5页 Journal of Ordnance Equipment Engineering
基金 国防973专项(7131441)。
关键词 水下拖缆 稳态分析 试验设计 响应面模型 多目标优化 underwater towing cable steady state analysis design of experiment response surface model multi-objective optimization
  • 相关文献

参考文献6

二级参考文献40

  • 1张成成,姚卫星.基于响应面的结构抗疲劳优化设计方法[J].南京航空航天大学学报,2007,39(1):37-40. 被引量:11
  • 2程成,须文波,冷文浩.基于iSIGHT平台DOE方法的螺旋桨敞水性能优化设计[J].计算机工程与设计,2007,28(6):1455-1459. 被引量:23
  • 3Olcer A I.A hybrid approach for multi-objective combinatorial optimization problems in ship design and shipping[J].Computers and Operations Research,2008(35):2760-2775.
  • 4Abdullah K,David W C,Alice E S.Multi-objective optimization using genetic algorithms:A tutorial[J].Reliability Engineering and System Safety,2006(91):992-1007.
  • 5Coello C A.http://www.lania.mx/-ccoello/EMOO/EMOObib.html[EB/OL],
  • 6Atashkari K Nariman-Zadeh N,Golcu M,Khalkhali A,Jamali A.Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms[J].Energy Conversion and Management,2007(48):1029-1041.
  • 7Yang Jianbo.Minimax reference point approach and its application for multi-objective optimization[J].European Journal of Operational Research,2000(126):541-556.
  • 8Dab K Agrawal S,Pratap A,Meyarivan T.A fast elitist non-dominated sorting genetic algorithm for muhi-objective optimization:NSGA-Ⅱ[C]//In:Proceedings of Sixth International Conference on Parallel Problem Solving from Nature,18-20 SOp,2000.Paris,France:Springer;,2000.
  • 9Xu Zeshui.Some similarity measures of intuitionistic fuzzy sets[J].Fuzzy Optimal Decision Making,2007(6):109-121.
  • 10JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodeling techniques under multiple criteria [ J ]. Journal of Structures and Multidisciplinary Optimization, 2001, 23(1) :1-13.

共引文献60

同被引文献20

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部