期刊文献+

基于小波变换的交通图像去雾方法 被引量:4

A method of traffic image defogging based on wavelet transform
下载PDF
导出
摘要 雾天的交通影响着人们的出行,是否可以安全的出行是人人所关心的问题.为获取含雾图像更多的特征信息,提出一种基于小波变换的交通图像去雾方法.一方面在RGB颜色空间对图像进行直方图均衡处理来增强图像的整体的对比度;另一方面在HSV色彩空间,对V分量进行小波变换处理,将分解得到的低频子带采取双边滤波处理的方式,而对多个高频子带进行非线性变换处理方式,将处理过的低频子带和多个高频子带,利用小波逆变换进行重构.最后将两幅图像进行线性组合,得到最终的去雾图像.实验结果表明,与其他方法相比,本文方法处理的的图像所含信息较高,便于人眼观察。 The traffic in foggy weather affects people's travel.Whether it is safe to travel is everyone's concern.In order to obtain more information of fog⁃containing images,a method of traffic image defogging based on wavelet transform is proposed.On the one hand,histogram equalization is carried out in the RGB color space to enhance the overall contrast of the image.In HSV color space on the other hand,wavelet transform was carried out on the V component processing,will get the low⁃frequency subband decomposition of bilateral filtering processing,and high frequency subband to multiple nonlinear transformation approach,will be treated with the low⁃frequency subband and several high frequency subband,reconstruct the wavelet inverse transformation.The final will have a linear combination of two images and get the final image to fog.The experimental results show that,compared with other methods,the method of processing the image contains information is higher,to the human eye observation.
作者 贺欢 吐尔洪江·阿布都克力木 何笑 HE Huan;TURGHUNJIAN·Abdukirim;HE Xiao(School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830017,China)
出处 《电子设计工程》 2020年第12期56-59,65,共5页 Electronic Design Engineering
基金 国家自然科学基金资助项目(11261061,61362039) 新疆师范大学数学教学资源开发重点实验室招标课题(XJNUSY082017B03)。
关键词 小波变换 àtrous算法 双边滤波 非线性变换 HSV模型 wavelet transform àtrous algorithm Bilateral filtering Nonlinear transformation HSV model
  • 相关文献

参考文献6

二级参考文献39

  • 1HE K, SUN J, TANG X O. Single image haze removal u- sing dark channel prior[ C ]//Proc. IEEE CVPR 09. Wash- ington: IEEE Computer Society, 2009 : 1956-1963.
  • 2Tumblin J,Turk G.LCIS:A Boundary Hierarchy For Detail-Preserving Contrast Reduction[C]//Conference on Computer Graphics&Interactive Techniques.2001:83-90.
  • 3Laurence M,Sabine S.High dynamic range image rendering with a retinex-based adaptive filter[J].IEEE Transactions on Image Processing,2006,15(9):2820-2830.
  • 4Ho Jang J,Choi B,Deuk Kim S,et al.Subband decomposed multiscale retinex with space varying gain[C]//Image Processing,2008.ICIP 2008.15th IEEE International Conference on.IEEE,2008:3168-3171.
  • 5Yao K,Tian D.Shadow Removal from Images Using an Improved Single-Scale Retinex Color Restoration Algorithm[C]//2009 International Joint Conference on Computational Sciences and Optimization.IEEE Computer Society,2009:934-938.
  • 6Land E H.Recent advances in retinex theory and some implications for cortical computations:color vision and the natural image.[J].Proceedings of the National Academy of Sciences of the United States of America,1983,80(16):5163-5169.
  • 7Jobson D J,Rahman Z U,Woodell G A.Properties and performance of a center/surround retinex[J].IEEE Transactions on Image Processing,1997,6(3):451-462.
  • 8Yang W D,Guo W,Peng K,et al.Research on Removing Shadow in Workpiece Image Based on Homomorphic Filtering[J].Procedia Engineering,2012,29(4):2360-2364.
  • 9Gorgel P,Sertbas A,Ucan O N.A waveletbased mammographic image denoising and enhancement with homomorphic filtering[J].Journal of medical systems,2010,34(6):993-1002.
  • 10Zhou Z,Sang N,Hu X.Global brightness and local contrast adaptive enhancement for low illumination color image[J].Optik-International Journal for Light and Electron Optics,2014,125(6):1795-1799.

共引文献29

同被引文献44

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部