期刊文献+

流场下格子-动力学晶体生长的模拟 被引量:1

Lattice-dynamics Method for the Simulation of Polymer Dynamic Crystallization Under Flow Field
下载PDF
导出
摘要 在常规的相场方法中,耦合格子玻尔兹曼方法,采用新建立的格子-动力学耦合模型模拟不完全结晶的聚合物(ipp)枝晶在流动下的生长。使用多松弛的格子玻尔兹曼方程替代温度场方程,在其中耦合流场,并通过Fortran语言对格子-动力学耦合模型进行求解,规避了传统相场法需要高分辨率场精确解决固液界面的难点的同时,研究了在不同流场流速,界面厚度,驱动力参数下的聚合物(ipp)结晶形貌。结论显示:流速越快,顺流方向枝晶的生长越迅速;增加界面厚度,晶体生长加速;驱动力参数增大,晶体生长速率增加。 Coupling the lattice Boltzmann method with conventional phase field method,the new coupling model is used to simulate the growth of incompletely crystallized polymers(ipp)in the flow.The temperature field equation was replaced with the multi-relaxation format of lattice Boltzmann equation,and coupling flow field,Fortran is used to resolve the lattice-dynamic coupling model.This model circumvented the difficulties of traditional phase field method that needed resolve solid liquid interface accurately in high resolution simultaneously,and observed the crystal morphology of polymer(IPP)in the different numerical size of flow rate,interface thickness and the driving force parameters.The result shows that the dendrite grows faster in the downstream direction with the faster flow rate,the crystal growth is accelerated with the increasing interface thickness,and the crystal growth rate is increased with the increasing driving force parameter.
作者 王鑫 杨斌鑫 WANG Xin;YANG Bin-xin(College of Applied Science,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《太原科技大学学报》 2020年第4期318-322,共5页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金(11402210) 国家自然科学基金青年科学基金(11701406)。
关键词 聚合物 格子玻尔兹曼方法 相场法 流动 数值模拟 polymer LBM phase field flow numerical simulation
  • 相关文献

参考文献4

二级参考文献20

  • 1朱昌盛,王智平,荆涛,柳百成.对流影响枝晶生长的相场法模拟研究进展[J].材料导报,2004,18(12):26-28. 被引量:8
  • 2WHEELER A A, MURRAY R J, SCHAEFER R J. Computation of dendrites using a phase field model[ J ]. Physica D, 1993,66 (10) :242-262.
  • 3ANDERSON D M, MCFADDEN G B, WHEELER A A. A phase-field model of solidification with convection [ J ]. Physica D, 2000,135 : 175-194.
  • 4KARMA A, RAPPEL W J. Phase-field simulation of three-dimensional dendritic is microscopic solvability theory correct [ J ]. Crystal Groeth, 1997,174:56-64.
  • 5KARMA A, RAPPEL W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface ki- netics [ J ]. Physical Review E, 1996,53 (4) :3017-3020.
  • 6TONG X,BECKERMANN C,KARMA A. Velocity and shape selection of dentritic crystals in a forced flow[J]. Phys Rev E, 2000,61:49-53.
  • 7BECKERMANN C, VISKANTA R. Mathematical modeling of transport phenomena during solidification of alloys[ J]. Appl Mech Rev, 1993,46 ( 1 ) : 1-7.
  • 8JEONG J H, GOLDENFELD N, DANTZIG J A. Phase-field model for three dimensional dedtitie growth with fluid flow[ J]. Phys Rev R,2001,6404(4) :1602.
  • 9FIX G J. Free boundary problems : theory and applications [ M ]. Boston: A Fasano and M Primicerio, 1983.
  • 10LANGER J S. Instabilities and pattern formation in crystal growth[ J]. Reviews of Modem Physics, 1980,52 (1) :1-28.

共引文献7

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部