摘要
移动机器人控制网络中的异常参数特征无法形成可识别的非平稳输出信号,导致传统的基于局部均值分解的异常参数识别过程精度低.提出一种移动机器人路径控制网络的异常参数识别方法.以移动机器人路径控制网络中,电路异常量处理结果作为支持,根据机器人射频识别量计算原理,通过单片机异常参数整合的方式,计算移动机器人路径控制网络中的可疑异常参数特征.在此基础上,通过单分量控制信号模态分解、多分量控制信号模态分解的方式,计算模态频率的阻尼比数值,完成移动机器人路径控制网络中异常参数识别.比对实验结果表明,与局部均值分解手段相比,异常参数识别精准度提升,非平稳信号调幅周期缩短至0.90s,调频波总长度不超过11.4mm,机器人非平稳输出信号的振动响应属性得到有效控制.
Abnormal parameter characteristics of mobile robot control network can not form non-stationary output signals which are recognizable.It makes the low accuracy of the traditional abnormal parameters recognition process based on local mean decomposition.A method of identifying abnormal parameters of path control network of mobile robot is proposed.Based on the processing results of circuit abnormal amount in the path control network of mobile robot,according to the calculation principle of robot radio frequency identification amount,the suspicious abnormal parameters in the path control network of mobile robot are calculated by integrating the abnormal parameters of single chip microcomputer.On this basis,through the mode decomposition of single component control signal and multi-component control signal,the damping ratio of modal frequency is calculated to identify the abnormal parameters in the path control network of mobile robot.The experimental results show that the accuracy of abnormal parameter identification is more than the local mean decomposition method,the amplitude modulation period of non-stationary signal is shortened to 0.90s,the total length of frequency modulation wave is not more than 11.4mm,and the vibration response attribute of non-stationary output signal of robot is effectively controlled.
作者
杨雁莹
YANG Yan-ying(Nanjing Forest Police College,Jiangsu Nanjing210023,China)
出处
《机械设计与制造》
北大核心
2020年第6期273-277,共5页
Machinery Design & Manufacture
基金
中央高校基本可以业务费专项资金项目—可视化网络安全态势感知仿真系统的研究与实现(LGYB201805)
公安部科技计划项目—基于大数据的警务人员精准需求研究(2018LLYJSLGA018)。
关键词
移动机器人
路径控制网络
电路异常量
射频识别量
单片机参数
控制信号
模态频率
阻尼比
Mobile Robots
Path Control Network
Circuit Abnormal Quantity
Rfid Volume
Single-Chip Parame-ters
Control Signal
Modal Frequency
Damping Ratio