摘要
如何解决抗浮问题是超深地下结构设计过程中一个极其重要的环节,直接关系着工程施工与运营期间的安全。依托埋深46.5m的广州地铁某车站工程,通过资料调研梳理总结了抗浮设计中的重难点;对7种不同的抗浮方案(增加抗浮齿槽、叠合墙、抗拔锚杆、DN400微型劲性抗拔桩、DN1200大直径抗拔桩、底框梁+抗拔桩、抗拔桩+降水泄压的组合抗浮法)开展了优化比选。结果表明,主、被动抗浮措施的组合抗浮法克服了传统抗浮技术的一些不足;应用该方法可适当降低工程造价、缩短工期,且施工方便。研究成果及思路可为后续类似超深地下工程的抗浮设计提供借鉴。
How to solve the anti-floating problem is an extremely important link in its design process of super-deep underground structures, which is directly related to the safety during the construction and operation of the project. Relying on a station project of Guangzhou Metro with a buried depth of 46.5 m, the major and difficult points in anti-floating design were summarized through data surveys. Optimization comparison and selection were carried out on seven different anti-floating solutions(adding anti-floating grooves, superimposed walls, anti-pull anchors, DN400 miniature stiff anti-pull pile, DN1200 large-diameter anti-pull pile, bottom frame beam + anti-pull pile, composite anti-float method of anti-pull pile + pressure relief by precipitation). The results show that the combined anti-floating method with active and passive anti-floating measures overcomes some of the shortcomings of traditional anti-floating technology;the application of this method can appropriately reduce the project cost, shorten the construction period, and facilitate the construction. The research results and ideas can provide reference for the anti-floating design of similar super-deep underground projects.
作者
黄俊光
李健斌
秦泳生
HUANG Junguang;LI Jianbin;QIN Yongsheng(Guangzhou Design Institute,Guangzhou 510620,China)
出处
《建筑结构》
CSCD
北大核心
2020年第10期129-134,38,共7页
Building Structure
关键词
超深地下结构
抗浮
方案优化
组合抗浮法
super-deep underground structure
anti-floating
scheme optimization
combined anti-floating method