期刊文献+

基于稀疏贝叶斯学习的时域流信号鲁棒动态压缩感知算法 被引量:5

A Robust Dynamic Compressive Sensing Algorithm for Streaming Signals in Time Domain Based on Sparse Bayesian Learning
下载PDF
导出
摘要 块效应和未知且时变的噪声强度会降低时域流信号动态稀疏重构的性能,为解决该问题,本文基于重叠正交变换和稀疏贝叶斯学习框架,提出一种对时域流信号进行动态压缩感知的鲁棒稀疏贝叶斯学习重构算法.该算法在消除块效应的同时,能够处理噪声强度未知且时变情形下的动态稀疏重构问题,相比现有的流信号稀疏贝叶斯学习算法具有更强的抗噪鲁棒性.尽管现有的时域流信号压缩感知的有效算法并不多,但实验表明,本文算法的重构信误比和重构成功率均明显高于现有的基于稀疏贝叶斯学习的流信号重构算法和基于L1-同伦的流信号重构算法,且达到相同的重构成功率所需的观测数目少于另两种算法,计算量和运行效率则与稀疏贝叶斯学习算法相近. Performance of dynamic sparse recovery for streaming signals in time domain will degrade for the existence of blocking artifacts and unknown time-varying noise intensity.To solve the above problems,a robust sparse Bayesian learning algorithm for dynamic compressive sensing of streaming signals in time domain is proposed based on the framework of lapped orthogonal transform and sparse Bayesian learning.In addition to eliminating the blocking artifacts,the proposed algorithm handles dynamic sparse Bayesian learning problems effectively under conditions of unknown time-varying noise intensity,which has better robustness against existing sparse Bayesian learning algorithms for streaming signals.Though there are not many existing effective algorithms for compressed sensing of streaming signals,experiments show that the proposed algorithm has obviously larger reconstruction signal-to-noise ratio and higher success rates for reconstruction than existing recovery algorithms for streaming signals based on sparse Bayesian learning or L1-homotopy;also,the measurement number required for particular success rates is obviously less than that of the other two algorithms,the computation cost and running time is approximately the same with the existing sparse Bayesian learning algorithm.
作者 董道广 芮国胜 田文飚 张洋 张海波 DONG Dao-guang;RUI Guo-sheng;TIAN Wen-biao;ZHANG Yang;ZHANG Hai-bo(Signal and Information Processing Key Laboratory in Shandong,Navy Aviation University,Yantai,Shandong 264001,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2020年第5期990-996,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.41476089,No.41606117,No.61671016)。
关键词 块效应 流信号 稀疏贝叶斯学习 动态重构 blocking artifacts streaming signals sparse Bayesian learning dynamic reconstruction
  • 相关文献

参考文献4

二级参考文献24

  • 1蔺发军,刘成国,成思,杨玉萍.海上大气波导的统计分析[J].电波科学学报,2005,20(1):64-68. 被引量:82
  • 2林伟,察豪,史建伟,丁飞,冯坤,程鹏.蒸发波导仿真及误差分析[J].舰船电子对抗,2006,29(1):20-22. 被引量:2
  • 3潘越,崔伟.PJ蒸发波导模型在沿海岸应用的分析研究[J].计算机仿真,2007,24(6):86-88. 被引量:4
  • 4Paulus R A, Practical application of an evaporation duct model[J]. Radio Science, 1985, 20(4): 887-896.
  • 5Luc M G, Sylvie G, Eric B. A simple method to determine evaporation duct height in the sea surface boundary layer[J]. Radio Science, 1992, 27(5): 635-644.
  • 6Steven M B, George S Y, James A C, A new model of the oceanic evaporation duct[J]. Journal of Applied Meteorology, 1997, 36: 193-204.
  • 7Paulus R A. Practical application of the IREPS evapora- tion duct model[ R ]. Tech Rep 966, Naval Ocean System Center, 1984,102.
  • 8LUC Musson-genon, SYLVIE Gauthier, ERIC Bruth. A Simple Methold to Determine Evaporation Duct Height in the Sea Surface Boundary Layer [ J ]. Radio Science, 1992,27(5) :635 -644.
  • 9IVANOV V K,SHALYAPIN V N,LEVADNYI Yu V. De- termination of the Evaporation Duct Height from Standard Meteorological Data[J]. Atmospheric and Oceanic Phys- ics,2007,43( 1 ) :36-44.
  • 10STEVEN M Babin. A New Model of the Oceanic Evapo- ration Duct and its Comparison with Current Models[ D. University of Maryland. 1996.

共引文献8

同被引文献62

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部