摘要
对任何基于网格的数值模拟而言,获得网格收敛的解是结果可信的必要条件,结冰模拟也是如此。为充分、完整地考察目前普遍使用的结冰数值模拟算法的网格收敛性情况,详细定量地验证了其在霜冰、混合冰、明冰等诸多工况下的网格收敛情况。结果表明:当前普遍使用的算法基本上可以获得网格收敛的结果。其中霜冰的收敛规律较好,角状冰收敛的规律性不如霜冰情况。目前常用算法的可靠性基本上满足工程需求,但对于有角冰的情况,在实际应用中需要进行详细谨慎的网格收敛性验证。
For any numerical simulation based on grid,obtaining mesh-independent solution is a necessary condition for the result to be credible.It is the same with icing simulations.In order to fully and completely investigate the grid convergence of the numerical algorithms for the icing accretion widely used in current,which is quantitatively verified its grid convergence in detail using many cases such as rime ice,mixed ice and glaze ice.The results show that the current commonly used algorithms could basically obtain mesh-independent solutions.Among them,the convergence of the rime ice is very regular,but the regularity of the ice with horns is not as good as the rime one.It is indicated that the commonly used algorithms could basically satisfy the requirements in engineering.However,careful verification is essential for the numerical simulation about the ice with horns in practical applications.
作者
陈航
谢亮
李佩哲
王福新
刘洪
CHEN Hang;XIE Liang;LI Pei-zhe;WANG Fu-xin;LIU Hong(School of Aeronautics and Astronautics,Shanghai Jiaotong University,Shanghai 200240,China)
出处
《科学技术与工程》
北大核心
2020年第3期1217-1223,共7页
Science Technology and Engineering
基金
国家自然科学基金(11802179)。
关键词
结冰模拟
计算流体力学
网格收敛性
拉格朗日方法
网格变形
icing accretion simulation
computational fluid dynamics
grid convergence
Lagrangian method
mesh deformation