期刊文献+

两关节压力驱动柔性仿生机器鱼的设计与仿真 被引量:13

DESIGN AND SIMULATION OF TWO-JOINT PRESSURE-DRIVEN SOFT BIONIC FISH
下载PDF
导出
摘要 为研究设计一种柔软度高、环境适应性强的新型仿生机器鱼,模仿鲨鱼外形及鲔科鱼类的游动姿态,设计了一种采用液压柔性驱动结构的仿生机器鱼.针对单关节液压驱动柔性机器鱼存在其C型摆动姿态不符合鲔科鱼类摆动规律的问题,采用两关节液压柔性驱动模拟鱼类S型摆动,并根据液压柔性驱动器原理设计仿生鱼的内部结构.依据理论波动方程确定机器鱼的摆动幅值,借助数值模拟计算施加在柔性驱动器内部的压强载荷大小,并分析计算液压柔性驱动器的驱动效率.应用有限元分析软件模拟仿生鱼在流体中的自主游动过程,并将两关节机器鱼与单关节机器鱼的自主巡游过程进行对比仿真,获得两种机器鱼在流体中自主巡游时的运动姿态、游动速度及流场情况.结果表明,在相同的频率与尾鳍摆幅下,两关节柔性机器鱼的巡游平均速度为0.29 BL/s(BL为鱼体体长),高于单关节机器鱼巡游平均速度0.15 BL/s,且由速度矢量图可得出两关节仿生鱼的S型摆动姿态更接近真实鱼类摆动规律,并在运动过程中会产生一系列离散的反向卡门涡街,推进效率高. In order to study and design a new type of bionic robotic fish with high softness and strong environmental adaptability,imitating the shape of shark and the swimming posture of tuna fish,a bionic robotic fish with hydraulic flexible driving structure is designed.In view of the problem that the single-joint hydraulically driven flexible robotic fish has a C-shaped swing posture that does not conform to the swing rule of tuna fish,a two-joint hydraulic flexible drive is used to simulate the S-shaped swing of the fish,and the internal structure of the bionic fish is designed according to the principle of the hydraulic flexible actuator.According to the theoretical wave equation,the swing amplitude of the robotic fish is determined,the magnitude of the pressure load applied inside the flexible actuator is calculated by numerical simulation,and the driving efficiency of the hydraulic flexible actuator is analyzed and calculated.The software of finite element analysis is used to simulate the autonomous swimming process of the robotic fish in the fluid.And the autonomous cruise process of the two-joint robotic fish and the one-joint roboic fish are simulated and compared to obtain the movement postures,swimming velocity and flow field of the two robotic fishes when they autonomously cruised in the fluid.The results show that at the same frequency and tail-fin swing,the average velocity of the two-joint soft roboic fish cruising is 0.29 BL/s,which is higher than the average velocity of the the one-joint roboic fish 0.15 BL/s.And frome the velocity vector diagram,it can be concluded that the S-type swing of the two-joint roboic fish is closer to the real fish swing attitude,and a series of discrete reverse Karman Vortex Streets will be generated during the movement,so the two-joint bionic fish has a higher propulsion efficiency.
作者 教柳 张保成 张开升 赵波 Jiao Liu;Zhang Baocheng;Zhang Kaisheng;Zhao Bo(Department of Mechanical and Electrical Engineering,School of Engineering,Ocean University of China,Qingdao 266100,China)
出处 《力学学报》 EI CSCD 北大核心 2020年第3期817-827,共11页 Chinese Journal of Theoretical and Applied Mechanics
基金 山东省2017年重点研发计划资助项目(2017GHY15015)。
关键词 仿生机器鱼 柔性 液压 游动性能 bionic robot fish flexibility hydraulic swimming performance
  • 相关文献

参考文献8

二级参考文献51

  • 1曾妮,杭观荣,曹国辉,王振龙.仿生水下机器人研究现状及其发展趋势[J].机械工程师,2006(4):18-21. 被引量:14
  • 2Papadopoulos E, Apostolopoulos E, Tsigkourakos P. Design, con- trol and experimental performance of a teleoperated robotic fish//Proceedings of 17 th Mediterranean Conference on Control & Automa- tion. Thessaloniki, 2009:766.
  • 3Martin J S, Scheid J F, Takahashi T, et al. An initial and bound- ary value problem modeling of fish-like swimming. Arch Ration Mech Anal, 2009, 188(3) : 429.
  • 4Morgansen K A, Duindam V, Mason R J, et al. Nonlinear control methods for planar Carangiform robot fish locomotion//Proceedings of the 2001 IEEE International Conference on Robotics & Automa- tion. Seoul, 2001:427.
  • 5Wang K, Yu J Z. An embedded vision system for robotic fish navi- gation//Proceedings of htternational Conference on Computer Appli- cation and System Modeling. Taiyuan, 2010:333.
  • 6Chen W S, Xia D, Liu J K. Modular design and realization of a torpedo-shape robot fishi Proceedings of IEEE International Con- ference on Mechatronics and Automation. Takamatsu, 2008:125.
  • 7Mason R M, Burdick J W. Experiments in carangiform robotic fish locomotion//Proceedings of IEEE International Conference on Ro- botics & Automation. San Francisco, 2000:428.
  • 8Barrett D S, Triantafyllou M S, Yue D K P, et al. Drag reduction in fish-like locomotion. J Fluid Mech, 1999, 392:183.
  • 9Low K H, Chong C W, Zhou C L. Performance study of a fish ro- bot propelled by a flexible caudal fin//Proceedings of IEEE Inter- national Conference on Robotics and Automation Anchorage Conven- tion District. Anchorage, 2010:90.
  • 10Sfakiotakis M, Lane D M, Davies J B C. Review of fish swim- ming modes for aquatic locomotion. IEEE J Oceanic Eng, 1999, 24(2) : 237.

共引文献57

同被引文献151

引证文献13

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部