期刊文献+

椭圆曲线y^2=7nx(x^2-8)的整数点 被引量:4

Integer Points of Elliptic Curves y^2=7nx(x^2-8)
下载PDF
导出
摘要 利用同余的性质、奇偶数的性质、Legendre符号的性质等初等方法,证明了n≡±5(mod8)为奇素数时椭圆曲线y^2=7nx(x^2-8)除整数点(x,y)=(0,0)外至多有4个整数点。研究结果对于a,b∈Z时,椭圆曲线y^2=pqx(x^2-a)的求解有一定的借鉴作用,也推进了该类椭圆曲线的研究。 The integral points on elliptic curve is a very important problem of Number Theory and related field.The positive integral points on elliptic curve y^2=7nx(x^2-8) remains unresolved.In this paper,the elementary methods were used including some properties of congruence,some properties of odd number and even number,and Legendre symbol.It was proved that the elliptic curve in title at most have four integer points except(x,y)=(0,0).These results can help solve the integral points on elliptic curve y^2=(x+a)(x^2+ax+b),a,b∈Z,and these results promote the study of the kind of elliptic curve.
作者 万飞 周子睛 王云娟 WAN Fei;ZHOU Zi-jing;WANG Yun-juan(College of Teachers Education,Honghe University,Mengzi 661199,China)
出处 《唐山师范学院学报》 2020年第3期12-14,共3页 Journal of Tangshan Normal University
基金 云南省教育厅科学研究基金项目(2019J1182) 红河学院大学生科技创新项目(SC1943)。
关键词 椭圆曲线 整数点 同余 LEGENDRE符号 elliptic curve integral point congruence Legendre symbol
  • 相关文献

参考文献6

二级参考文献34

  • 1祝辉林,陈建华.两个丢番图方程y^2=nx(x^2±1)[J].数学学报(中文版),2007,50(5):1071-1074. 被引量:30
  • 2Luca F., Walsh P. G., On a Diophantine equation of Cassels, Glasgow Math. J., 2005, 47(2): 303-307.
  • 3Luca F.,Walsh P. G., Squares in Lucas sequences with Diophantine applications, Acta Arith., 2001, 100(1): 47-62.
  • 4Walsh P. G., A note on Ljunggren's theorem about the Diophantine equation aX^2 - bY^4 = 1, Comptes Rendues Mathematical Reports of the Royal Society of Canada, 1998, 20(4): 113-119.
  • 5Bennett M. A., Lucas square pyramidal problem revisited, Acta Arith., 2002, 105(4): 341-347.
  • 6Cassels J. W. S., A Diophantine equation, Glasgow Math. J.,1985, 27(1):11-18.
  • 7Ljunggren W., Ein Satz uber die diophantische Gleichung Ax^2 - By^4 = C(C = 1, 2, 4), Skand Mat. -Kongr. Lund, 1953, 188-194.
  • 8Cohn J. H.E.,The Diophantine equation x^4 + 1 = dy^2, Mathematics of Computation, 1997, 66(219): 1347- 1351.
  • 9Cohn J. H. E., The Diophantine equation x^4 - dy^2 = 1, Acta Arith., 1997, 78(3): 401-403.
  • 10Bennett M. A., Walsh P. G., The Diophantine equation b^2X^4 - dY^2 =1, Pro. American Math. Soc., 1999, 127(12): 3481-3491.

共引文献38

同被引文献25

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部