期刊文献+

CMT增材制造工艺对5356铝合金熔敷层组织及力学性能的影响 被引量:9

Effects of CMT Additive Manufacturing Process on Microstructure and Mechanical Properties of 5356 Aluminum Alloy Cladding Layer
下载PDF
导出
摘要 采用冷金属过渡(CMT)电弧增材方法,以5356铝合金焊丝为试验对象,研究了送丝速度与焊接速度对5356铝合金电弧增材制造成形的影响,并分析了熔覆层微观组织特性和增材试样的力学性能。结果表明:送丝速度和焊接速度是电弧增材制造尺寸精度的重要影响因素;熔覆层微观组织可分为3个区域。不同焊接速度下,增材试样的力学性能均超过焊丝拉伸强度标准值,抗拉强度平均值达到274.7 MPa。 The effects of wire feeding speed and welding speed on the manufacturing and forming of 5356 aluminum alloy arc additive are studied by using the method of cold metal transition(CMT)arc additive.The microstructure characteristics of the cladding layer and the mechanical properties of the additive samples are analyzed.The results show that wire feeding speed and welding speed are important factors affecting the dimensional accuracy of arc additive manufacturing,and the microstructure of the cladding layer can be divided into three regions.At different welding speeds,the values of tensile strength of the additive samples all exceed the standard value of tensile strength of the welding wire,and the average value of tensile strength reaches 274.7 MPa.
作者 周佳芬 赵慧慧 李送斌 周佳俊 黄珲 尹玉环 ZHOU Jiafen;ZHAO Huihui;LI Songbin;ZHOU Jiajun;HUANG Hui;YIN Yuhuan(Shanghai Aerospace Equipments Manufacturer Co.,Ltd.,Shanghai 200245,China)
出处 《上海航天(中英文)》 CSCD 2020年第3期103-106,114,共5页 Aerospace Shanghai(Chinese&English)
基金 国家重点研发计划资助项目(2018YFB1105804) 装备预先研究项目(41404020102) 上海市青年科技启明星计划资助项目(18QB1401700)。
关键词 冷金属过渡(CMT) 送丝速度 焊接速度 微观组织 力学性能 cold metal transition(CMT) wire feeding speed welding speed microstructure mechanical property
  • 相关文献

参考文献6

二级参考文献25

  • 1申俊琦,胡绳荪,刘望兰,韩敬华.铝合金焊接快速成形层间间隔时间分析[J].焊接学报,2008,29(5):109-112. 被引量:11
  • 2Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12): 3315-3322.
  • 3Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2015.
  • 4Ouyang J H,Wang H J, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17: 103- 124.
  • 5Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148: 93- 102.
  • 6Gn J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layercold working and post-deposition heat treatment on the additively manufactured A1-6.3Cu alloy[J]. Materials Science & Engineering A, 2016, 651:18-26.
  • 7Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys[J]. International Journal of Fatigue, 2003, 25(3): 245-256.
  • 8Toda H, Oogo H, Uesugi K, et al. Roles of pre-existing hydrogen micro-pores on ductile fracture[J]. Materials Transactions, 2009, 50: 2285- 2290.
  • 9Kobayashi M, Dorce Y, Toda H, et al. Effect of local volume fraction of micro-porosity on tensile properties in AI-Si-Mg cast alloy[J]. Materials Science and Technology, 2010, 26:962-967.
  • 10Cong Baoqiang, Ding Jialuo, Stewart W. Effect of are mode in cold metal transfer process on porosity of additively manufactured AI-6.3%Cu alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(9, 12): 1593--1606.

共引文献80

同被引文献107

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部