期刊文献+

基于深度学习算法的教学质量评价系统 被引量:10

Teaching quality evaluation system based on deep learning algorithm
下载PDF
导出
摘要 基于深度学习算法设计教学质量评价系统,系统自动生成教师教学质量评价报告,分析教学过程中存在的问题,给出优化建议。教学质量评价系统包括用户管理、网上评价、数据管理、评价结果查询、教学质量分析5个单元,用户进入系统后为教学质量打分。基于教学质量评价指标体系内容,卷积神经网络学习专家教学质量评价样本,构建卷积神经网络教学质量评价模型。将教学质量评价测试样本输入模型,模型输出结果即为教学质量评价分析结果,主要分析教学存在的问题,提出改进建议。系统可统计不同学科教学质量评价情况,统计不同学科教学质量占比情况,智能化程度较高,值得推广使用。 The teaching quality evaluation system is designed based on the deep learning algorithm.The system can automatically generate teachers′teaching quality evaluation report,analyze the problems existing in the teaching process and give optimization suggestions.The teaching quality evaluation system includes 5 units,named user management,online evaluation,data management,evaluation result query and teaching quality analysis.The user scores the teaching quality after entering the system.On the basis of the content of teaching quality evaluation index system and the teaching quality evaluation samples of convolutional neural network learning experts,a convolutional neural network teaching quality evaluation model is constructed.Input the teaching quality evaluation test sample into the model,the output result of the model is the teaching quality evaluation and analysis results,which mainly analyzes the problems existing in the teaching.In addition,the suggestions for improvement is put forward.The system can count the evaluation of teaching quality of different subjects and the teaching quality proportion of different subjects.It is highly intelligent and worth popularizing.
作者 赵敏 詹玮 ZHAO Min;ZHAN Wei(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;College of Clinical Medicine,Guizhou Medical University,Guiyang 550025,China)
出处 《现代电子技术》 北大核心 2020年第13期143-146,149,共5页 Modern Electronics Technique
关键词 深度学习 用户 教学质量 数据管理 评价系统 智能化程度 deep learning user teaching quality data management evaluation system intelligence level
  • 相关文献

参考文献14

二级参考文献102

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2吴哲敏,梁海霞.改进的层次分析法在大学生厌学分析中的应用[J].武汉理工大学学报(信息与管理工程版),2006,28(1):147-149. 被引量:8
  • 3RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors [ J]. Nature, 1986, 323 (9) : 533 -536.
  • 4BALDI P, HORNIK K. Neural networks and principal component analysis: learning from examples without local minima [ J]. Neural Networks, 1989, 2(1) : 53 - 58.
  • 5BENGIO Y, LAMBLIN P, POPOVIEI D, et al. Personal communications with Will Zou. learning optimization Greedy layer-wise training of deep networks [ C]// Proceedings of the 20th Annual Conference on Neural Information Processing System. Cambridge, MA: MIT Press, 2006:153 - 160.
  • 6BENGIO Y. Learning deep architectures for AI [ J]. Foundations & Trends in Machine Learning, 2009, 2(1) : 1 - 127.
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C]// Proceedings of the 2008 25th International Conference on Machine Learning. New York: ACM, 2008:1096-1103.
  • 8CHEN M, WEINBERGER K, SHA F, et al. Marginalized denoising auto-encoders for nonlinear representations [ C]//Proceedings of the 2014 31 th International Conference on Machine Learning. New York: ACM, 2014: 1476- 1484.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion [ J]. Journal of Machine Learning Research, 2010, 11(6) : 3371 -3408.
  • 10LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11) : 2278 - 2324.

共引文献2138

引证文献10

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部