摘要
Vacuum ultraviolet(VUV)photoionization and photodissociation of methylcyclohexane have been studied utilizing a reflectron time-of-flight mass spectrometer(RTOF-MS)with synchrotron radiation source.Photoionization efficiency curves(PIEs)of molecule ion C7H14^+ and fragment ions C7H13^+,C6H11^+,C6H10+,C5H10^+,C5H9^+,C4H8^+,C4H7^+,and C3H5^+ were observed.The ionization energy of methylcyclohexane was measured to be(9.80±0.03)eV,and appearance energies of fragment ions were determined from the PIEs.Optimized structures of transitional states,intermediates and product ions were characterized at the B3LYP/6-31G(d)level and the energies were calculated using G3B3 method.Formation channels of dominating fragment ions were proposed.Intramolecular hydrogen migrations and carbon ring-opening were the foremost processes in fragmentation pathways of methylcyclohexane.
基金
supported by the National Natural Science Foundation of China(No.91544105,No.41275127,No.U1532137 and No.11575178)。