摘要
利用已开发的铅富氧侧吹氧化熔池熔炼多相平衡热力学数学模型,计算某典型铅侧吹氧化熔炼生产工况,验证模型热力学分析的可行性,进而考察氧料比(ROC)、石英熔剂率(RSiO2)、石灰熔剂率(RCaO)、返尘加入率(RB,dust)、熔炼渣温度(TSlag)等工艺参数对产物产率及其组成的影响。结果表明:提高ROC、RSiO2、RCaO、RB,dust或TSlag,在提升一次粗铅品位和产品质量的同时,必然会导致渣含铅升高、一次粗铅收率降低,部分杂质元素入渣脱除率降低;当这些工艺参数控制过高时,一次粗铅品位反而会降低;综合考虑产物产率、一次粗铅品位、富铅渣流动性、烟灰利用率和物料挥发性,ROC、RSiO2、RCaO、RB,dust和TSlag建议分别控制在112 Nm3/t、4%、3%、21%和1323 K左右。
With the developed multi-phase equilibrium thermodynamic mathematical model of lead oxygen-enriched side-blown oxidation bath smelting,the production conditions of a typical lead side-blown oxidation smelting were calculated,and the feasibility of thermodynamic analysis of the model was verified.Then the effects of the oxygen-to-feed ratio(ROC),quartz flux rate(RSiO2),lime flux rate(RCaO),back-dust addition rate(RB,dust)and slag temperature(TSlag)were investigated on the yield and compositions of the products.The results show that the improvement of ROC,RSiO2,RCaO,RB,dust or TSlag will inevitably lead to the increase of lead content in slag,the decrease of yield of primary lead and the decrease of removal rate of some impurity elements in slag,while the grade of primary crude lead will decrease when these process parameters are controlled too high.Considering the product yield,primary lead grade,fluidity of lead-rich slag,utilization ratio of back-dust and volatility of materials,ROC,RSiO2,RCaO,RB,dust and TSlag should be controlled at about 112 Nm3/t,4%,3%,21% and 1323 K,respectively.
作者
刘燕庭
杨天足
李明周
LIU Yan-ting;YANG Tian-zu;LI Ming-zhou(School of Metallurgy and Environment,Central South University,Changsha 410083,China;Changsha Design and Research Institute of Nonferrous Metallurgy,Changsha 410001,China;Faculty of Materials Metallurgy and Chemistry,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处
《中国有色金属学报》
EI
CAS
CSCD
北大核心
2020年第5期1110-1118,共9页
The Chinese Journal of Nonferrous Metals
基金
国家高技术研究发展计划资助项目(2011AA061002)
中国博士后科学基金资助项目(2019M662268)。
关键词
富氧侧吹
铅熔池熔炼
多相平衡
化学平衡常数法
oxygen-enriched side-blown
lead bath smelting
multi-phase equilibrium
chemical equilibrium constant method