期刊文献+

人工智能医学影像辅助诊断系统在肺结节诊断上的应用研究 被引量:1

下载PDF
导出
摘要 人工智能技术不断涉足工作生活的各个领域,AI技术与医学影像成像方法的结合已经成为领域内的研究热点。本文介绍了基于多模态3D-CNN特征提取方法以及图像识别和深度学习技术开发的人工智能医学影像辅助诊断系统,通过该系统的部署,为医生阅片过程中提供智能辅助诊断信息,经过人工智能与专家组分别对胸部CT片子进行阅读,评估该系统确实能够在实际应用中帮助医生提高工作效率、减少漏诊。
作者 万云
出处 《甘肃科技》 2020年第10期151-152,101,共3页 Gansu Science and Technology
  • 相关文献

参考文献4

二级参考文献43

  • 1王晓华,陈卉,马大庆,高培毅,周新华.人工神经网络在孤立性肺结节CT诊断研究中的应用[J].中华放射学杂志,2006,40(4):377-382. 被引量:21
  • 2Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J].CA Cancer J Clin,2015,65:87-108.
  • 3Bogoni L, Ko JP, Alpert J, et al. Impact of a computer-aided detec-tion (CAD) system integrated into a picture archiving and communi-cation system (PACS) on reader sensitivity and efficiency for thedetection of lung nodules in thoracic CT exams [J]. J Digit Imaging,2012,25:771-781.
  • 4Fabel M, Wulff A, Heckel F,et al. Clinical lymph node staging--in-fluence of slice thickness and reconstruction kernel on volumetryand RECIST measurements[J]. Eur J Radiol,2012 ,81:3124-3130.
  • 5Wielpiitz MO, Wroblewski J, Lederlin M,et al. Computer-aided de-tection of artificial pulmonary nodules using an ex vivo lung phan-tom: influence of exposure parameters and iterative reconstruction[J]. Eur J Radiol, 2015,84:1005-1011.
  • 6Hein PA, Rogalla P,KIessen C,et al. Computer -aided pulmonarynodule detection - performance of two CAD systems at different CTdose levels[J]. Rofo, 2009,181:1056-1064.
  • 7El-Baz A, Beache GM, Gimel * Farb G, et al. Computer-aided diag-nosis systems for lung cancer: challenges and methodologies[J]. Int JBiomed Imaging, 2013, 2013:942353.
  • 8Bram YG, Schaefer-Prokop CM, Mathias P. Computer-aided diag-nosis: how to move from the laboratory to the clinic[J]. Radiology,2011,261:719-732.
  • 9Jacobs C, van Rikxoort EM, Scholten ET, et al. Solid, part-solid, ornon -solid: classification of pulmonary nodules in low -dose chestcomputed tomography by a computer-aided diagnosis system[J], In-vest Radiol, 2015, 50: 168-173.
  • 10Jeon KN,Goo JM, Lee CH, et al. Computer-aided nodule detectionand volumetry to reduce variability between radiologists in the inter-pretation of lung nodules at low-dose screening CT[J]. Invest Radiol,2012,47: 457-461.

共引文献75

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部