期刊文献+

一种基于音高显著性增强的主旋律提取方法 被引量:1

Main Melody Extraction Method Based on Saliency Enhancement
下载PDF
导出
摘要 在音乐信息检索领域,主旋律的提取是一项非常困难的工作。复调音乐中的不同声源相互影响,导致主旋律音高序列不连续,使旋律原始音高准确率降低。针对这一问题,设计了增强音高显著性表示和自动旋律跟踪的CNN-CRF模型。为了更好地提取谐波信息,提出利用结构化的数据来加强SF-NMF计算的初始显著性表示,并在动态规划框架下结合旋律特征和音高的平滑约束条件在音高空间寻找最优的演变路径。实验表明,所提方法得到了较好的旋律提取结果,且在两个测试数据集上的原始音高准确率均高于其他参考方法,通过对比不同输入验证了结构化数据能加强显著性表示并弥补SF-NMF对音高的误判。 In the field of music information retrieval,the extraction of the main melody is a very difficult task.In the polyphonic music,different sound sources interact with each other,leading to discontinuity of the main melody’s pitch sequence,which reduces the accuracy of the original pitch of the melody.In response to this problem,a CNN-CRF model with enhanced pitch salie-ncy representation and automatic melody tracking is designed.In order to better extract the harmonic information,it is proposed to enhance the initial saliency representation of the SF-NMF calculation by structured data,and to combine the melody characte-ristics and the smooth constraint conditions of the pitch under the dynamic programming framework to find the optimal evolution path.Experiments show that the proposed method has better melody extraction results,and the original pitch accuracy on both test data sets is higher than that of other reference methods.Comparing different inputs validates that structured data can enhance the significance representation and make up for the misJudgement of pitch by SF-NMF.
作者 金文清 韩芳 JIN Wen-qing;HAN Fang(School of Information Science and Technology,Donghua University,Shanghai 201620,China)
出处 《计算机科学》 CSCD 北大核心 2020年第S01期24-28,共5页 Computer Science
基金 国家自然科学基金(11572084,11972115)。
关键词 主旋律提取 音乐信号处理 音高显著性增强 CNN-CRF 音乐信息检索 Melody extraction Music signal processing Pitch saliency enhancement CNN-CRF Music information retrieval
  • 相关文献

参考文献3

二级参考文献14

  • 1王可,龚晓峰.复值对称矩阵的雅可比联合对角化(英文)[J].新型工业化,2013,2(3):77-84. 被引量:3
  • 2Nobutaka Ono,Kenichi Miyamoto,Hirokazu Kameoka. A real-time equalizer of harmonic and percussive 220componets in music signals[A].{H}Vienna,Austria,.
  • 3Halfdan Rump,Shigeki Miyabe,Emiru Tsunoo. Autoregressive MFCC models for genre classification improved by harmonic-percussion separation[A].2010.87-92.225.
  • 4Hideyuki Tachibana,Takuma Ono,Nobutaka Ono. Melody line estimation in homophonic music audio signals based on temporal-variability of melodic source[J].International Conference on Acoustics Speech and Signal Processing(ICASSP'01),2010.425-428.
  • 5K.Murphy. HMM Toolbox for MATLAB[OL].http:/www.cs.ubc.ca/murphyk/Software/HMM/hmm.htm 230,2005.
  • 6Bel o J P,Daudet L,Abdal ah S. A tutorial on onset detection in music signals[J].Speech and Audio Processing,2005,(05):1035-1047.
  • 7W. Chou,L. Gu. Robust singing detection in speech/music discriminator design[A].Salt Lake City,UT:IEEE,2001.865-868.235.
  • 8M. Wu,D. L. Wang,G. J. Brown. A multipitch tracking algorithm for noisy speech[J].Speech Audio Process,2003,(03):229-241.
  • 9Hermann L,F Von Helmholtz. On the Sensations of Tone[M].Braunschweig,Germany:Cosimo,In c,2007.
  • 10G. J. Brown,D. L. Wang. Separation of speech by computational auditory scene analysis[A].{H}New York:Springer-Verlag,2005.371-402.240.

共引文献18

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部