期刊文献+

基于区域注意力机制的遥感图像检索 被引量:8

Remote Sensing Image Retrieval Based on Regional Attention Mechanism
原文传递
导出
摘要 遥感图像存在大量语义对象,相同的语义对象视觉差异较大,针对卷积神经网络(CNN)提取的全局特征不能准确描述图像内容的问题,提出了一种使用区域注意力机制的遥感图像检索方法。首先去除CNN的全连接层,将高层特征作为区域注意力网络的输入;然后在遥感图像数据集上分别训练CNN和区域注意力网络,提取具有区域关注度的图像特征;最后构建了一种多距离相似性度量矩阵并采用扩展查询以提高检索性能。实验结果表明,相比基于全局特征的遥感图像检索方法,本方法能有效抑制遥感图像背景和不相关的图像区域,在两大遥感实验数据集上的检索性能更好。 Remote sensing images have a large number of semantic objects,and the visual differences of the same semantic objects are large.Aiming at the problem that the global features extracted by convolutional neural network(CNN)cannot accurately describe the image content,a remote sensing image retrieval method based on regional attention mechanism is proposed.First,the fully connected layer of the CNN is removed,and the deep features are used as the input of regional attention network.Then,the CNN and regional attention network are trained respectively on remote sensing image dataset.After that,local image features with attention can be extracted.Finally,a multi-distance similarity metric matrix is constructed,and extended query is used to improve retrieval performance.Experimental results show that,compared with remote sensing image retrieval method based on global features,this method can effectively suppress the background of remote sensing images and unrelated image regions,and the retrieval performance is better on the two large remote sensing experimental data sets.
作者 彭晏飞 梅金业 王恺欣 訾玲玲 桑雨 Peng Yanfei;Mei Jinye;Wang Kaixin;Zi Lingling;Sang Yu(School of Electronic cand Information Engineering,Liaoning Techrical University,Huludao,Liaoning 125105,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第10期172-180,共9页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61702241,61602226) 辽宁省教育厅高等学校基本科研项目(LJ2017FBL004)。
关键词 遥感图像检索 卷积神经网络 区域注意力机制 多距离矩阵 扩展查询 remote sensing image retrieval convolutional neural network regional attention mechanism multidistance matrix query expansion
  • 相关文献

参考文献4

二级参考文献20

共引文献96

同被引文献44

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部