期刊文献+

Novel model of thermo-magneto-viscoelastic medium with variable thermal conductivity under effect of gravity 被引量:1

下载PDF
导出
摘要 The basic equations for a homogeneous and isotropic thermo-magnetoviscoelastic medium are formulated based on three different theories, i.e., the GreenLindsay(G-L) theory, the coupled(CD) theory, and the Lord-Shulman(L-S) theory. The variable thermal conductivity is considered as a linear function of the temperature. Using suitable non-dimensional variables, these basic equations are solved via the eigenvalue approach. The medium is initially assumed to be stress-free and subject to a thermal shock.The numerical results reveal that the viscosity, the two-temperature parameter, the gravity term, and the magnetic field significantly influence the distribution of the physical quantities of the thermoelastic medium.
作者 S.M.SAID
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期819-832,共14页 应用数学和力学(英文版)
  • 相关文献

参考文献6

二级参考文献125

  • 1H.M.约塞夫,吴承平.带球形空腔的广义热弹性无限大材料的弹性模量和传热系数与材料参考温度的相关性[J].应用数学和力学,2005,26(4):431-436. 被引量:10
  • 2Das S C, Acharya D P, Sengupta P R. Surface waves in an inhomogeneous elastic medium under the influence of gravity[J]. Rev Roum Des Sci Tech, 1992,37(5) :539-551.
  • 3Abd-AUa A M,Ahmed S M. Rayleigh waves in an orthotropic thermoelastic medium under gravity field and initial stress[J]. J Earth Moon Planets, 1996,75(3) : 185-197.
  • 4Abd-AUa A M, Ahmed S M. Stonley and Rayleigh waves in a nonhomogeneous orthotropic elastic medium under the influence of gravity[ J]. Appl Math Camp ,2003,135: 187-200.
  • 5Youssef H M. Problem of generalized thermoelastic infinite medium with cylindrical cavity subjected to ramp-type heating and loading[J]. Arch Appl Mech,2006,75:553-565.
  • 6Sinha S B,Elsibai K A. Reflection and refraction of thermoelastic waves at an interface of two semiinfinite media with two relaxation times[ J]. J Thermal Stresses, 1997,20( 2 ):129-145.
  • 7Sharma J N, Kumar V. Plane strain problems of transversely isotropic thermoelastic media[J].J Thermal Stresses, 1997,20( 5 ) : 463-475.
  • 8Chandrasekharaiah D S. Hyperbolic thermoelastic: a review of recent literature[ J]. Appl Mech Rev, 1998,51 ( 12 ) : 705 -729.
  • 9Lord H W, Shulman Y.A generalized dynamical theory of thermoelasticity solids[J]. J Mech Phy Solids, 1957,15 (5) :299-309.
  • 10Muller I. The coldness, a universal function in thermoelastic bodies[ J]. Arch Rat Mech Anal, 1971,41 (5) :319-332.

共引文献23

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部