期刊文献+

利用蜂群算法优化的区域高程拟合精度分析 被引量:4

Accuracy Analysis of Regional Height Fitting Optimized by Bee Colony Algorithm
下载PDF
导出
摘要 针对最小二乘支持向量机拟合法的拟合参数难以选取的问题,提出将人工蜂群算法引入最小二乘支持向量机建立高精度区域拟合模型的方法。人工蜂群算法可对最小二乘支持向量机中的参数进行全局性追踪搜索,模仿蜜蜂的采蜜过程,将参数的初选值作为蜜源,最小二乘支持向量机预测的平均平方误差作为目标函数,在一定范围内经过迭代更新确定最佳参数,最终建立精度较高的全球定位系统(GPS)高程拟合模型。实验结果表明,相比常规最小二乘支持向量机拟合法,ABC-LSSVM组合方法构建的拟合模型精度提高了28%,在此同时,该组合方法比BP神经网络拟合法的收敛效果更高、稳定性更佳,证明了ABC-LSSVM组合方法在GPS高程拟合模型构建中的有效可行性,为GPS高程拟合模型的建立提供一定的参考价值。 The fitting parameters of the least squares support vector machine fitting method are difficult to select.In order to solve the problem,a method of introducing the artificial bee colony algorithm into the least squares support vector machine to establish a high-precision region fitting model was proposed.The artificial bee colony algorithm could perform global tracking search on the parameters in the least squares support vector machine,imitate the honey collecting process of the bees,and use the primary value of the parameters as the honey source,and the average square error predicted by the least squares support vector machine as the target.The function value was determined by iterative update within a certain range to determine the optimal parameters,and finally a GPS height fitting model with higher precision was established.The experimental results show that the accuracy of the fitting model constructed by the ABC-LSSVM combination method is improved by 28%compared with the conventional least squares support vector machine fitting method.At the same time,the combined method has higher convergence and better stability than the BP neural network fitting method.The effective feasibility of the ABC-LSSVM combination method in the construction of GPS height fitting model is proved,which provides a certain reference value for the establishment of GPS height fitting model.
作者 周飞 张炎 唐诗华 邢鹏威 张跃 ZHOU Fei;ZHANG Yan;TANG Shi-hua;XING Peng-wei;ZHANG Yue(Geomatics Center of Guangxi,Nanning 530023,China;College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China;Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541006, China)
出处 《科学技术与工程》 北大核心 2020年第16期6330-6335,共6页 Science Technology and Engineering
基金 国家自然科学基金(41864002) 广西空间信息与测绘重点实验室基金(16-380-25-25,16-380-25-13) 广西高校中青年教师基础能力提升项目(KY2016YB823)。
关键词 人工蜂群算法 高程拟合 最小二乘支持向量机 正则化参数 核参数 artificial bee colony algorithm height fitting least squares support vector machine regularization parameter kernel parameter
  • 相关文献

参考文献10

二级参考文献93

共引文献141

同被引文献43

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部