期刊文献+

基于PCA-ESN模型的潘家口水库水位预测研究 被引量:2

Research on Water Level Forecast Based on PCA-ESN Model
下载PDF
导出
摘要 选择河北省潘家口水库为研究对象,采用PCA算法对数据进行预处理,选取新的主成分作为输入变量,再通过ESN模型对水库水位进行预测。实验结果表明,历史水位、降水量2个因素的变化对水位有较大的影响;ESN预测模型能较好地预测水位变化趋势,误差小,精度高,应用在水位预测上具有可行性和有效性。 With Panjiakou Reservoir in Hebei Province as the research object,the PCA algorithm is used to preprocess the data.Then,the new principal component is selected as the input variable,and the water level of this reservoir is forecast through the PCA-ESN model.The experimental results show that the two factors of historical water level and the rainfall have a great impact on the water level.The ESN model can better forecast the trend of the water level changes with small errors and high accuracy,which is feasible and effective in the forecast of water level.
作者 龚莎 彭宏玉 GONG Sha;PENG Hong-yu(Graduate School of Tangshan,Southwest Jiaotong University,Tangshan 063000,China;Department of Computer Science and Technology,Tangshan University,Tanghan 063000,China)
出处 《唐山学院学报》 2020年第3期37-41,67,共6页 Journal of Tangshan University
基金 西南交通大学合作智慧水务项目(1200305) 唐山市室内定位重点实验室建设项目(210050202)。
关键词 潘家口水库 回声状态网络模型 主成分分析法 水位预测 Panjiakou Reservoir Echo State Network(ESN)model Principal Component Analysis(PCA) water level forecast
  • 相关文献

参考文献4

二级参考文献32

  • 1赵翔,崔保山,杨志峰.白洋淀最低生态水位研究[J].生态学报,2005,25(5):1033-1040. 被引量:95
  • 2韩美清,王路光,王靖飞,王世研,郭平毅.基于GIS的白洋淀流域生态环境评价[J].中国生态农业学报,2007,15(3):169-171. 被引量:21
  • 3Karunasinghea D S K, Liong S Y. Chaotic time series prediction with a global model: Artificial neural network [J]. J of Hydrology, 2006, 323(1-4): 92-105.
  • 4Elman J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
  • 5Takens F. Daynamical systems and turbulence, lecture notes in mathematics[M]. Berlin: Sringer, 1981.
  • 6Peng D Z, Zhang Y. Dynamics of generalized PCA and MCA learning algorithms[J]. IEEE Trans on Neural Networks, 2007, 18(6): 1777-1784.
  • 7Hartmann H, Becker S, King Lorenz. Predicting summer rainfall in the Yangtze river basin with neural networks[J]. Int J of Climatology, 2008, 28(7): 925- 936.
  • 8Mika S, Scholkopf B, Smola A. Kernel PCA and denoising in feature space [C] . Advances in Neural Information Processing Systems. Cambridge: MTI Press, 1999: 524-536.
  • 9Alzate C, Suykens J A K. Kernel component analysis using an epsilon-insensitive robust loss function [J]. IEEE Trans on Neural Networks, 2008, 19(9): 1583- 1598.
  • 10Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication[J]. Science, 2004, 304(5667): 78-80.

共引文献52

同被引文献27

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部