期刊文献+

多流卷积神经网络的骨架行为识别 被引量:4

Skeleton Action Recognition of Multi-stream Convolutional Neural Networks
下载PDF
导出
摘要 近年来基于骨架数据集的行为识别已成为行为识别领域研究热点.以往基于骨架信息的行为识别研究,是从原始骨架数据中直接提取一系列行为特征信息,作为行为识别网络模型的输入,这种方法忽略了行为中骨架间存在的时空依赖关系,不利于提高行为识别准确度.本文直接利用骨架数据作为网络模型的输入,提出一种基于骨架数据的多流卷积神经网络的行为识别方法.该方法首先进行骨架动作建模;然后利用多流的卷积网络框架提取骨架行为时空特征信息,最后进行行为特征融合和识别.在NTU_RGB+D数据集上进行行为识别,实验结果表明此方法能够提高识别准确率. In recent years,action recognition based on skeleton dataset has become a research hotspot in the field of action recognition.In the past,the action recognition research based on skeleton information directly extracted a series of behavioral feature information from the original skeleton data as the input of the behavior recognition network model.This method ignores the spatio-temporal dependence between the skeletons in the behavior,and is not conducive to improving the accuracy of behavior recognition.Using skeleton data as the input of network model,this paper proposes a multi-stream convolutional neural network action recognition method based on skeleton data.firstly,the method performs dynamic skeleton modeling.Then,the multi-stream convolutional network framework is used to extract the skeleton action spatio-temporal feature information,and finally the action feature fusion and recognition.The action recognition is carried out on the NTU_RGB+D dataset.The experimental results show that this method can improve the recognition accuracy.
作者 华钢 曹青峰 朱艾春 张赛 唐士宇 崔冉 HUA Gang;CAO Qing-feng;ZHU Ai-chun;ZHANG Sai;TANG Shi-yu;CUI Ran(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221008,China;College of Computer Science and Technology,Nanjing University of Technology,Nanjing 211816,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1286-1290,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(51574232)资助.
关键词 卷积神经网络 骨架行为识别 骨架动作建模 时空特征信息 特征融合 convolutional neural network skeleton action recognition skeleton action modeling spatio-temporal information feature fusion
  • 相关文献

参考文献1

二级参考文献2

共引文献4

同被引文献26

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部