期刊文献+

ON NEW APPROXIMATIONS FOR GENERALIZED CAUCHY FUNCTIONAL EQUATIONS USING BRZDȨK AND CIEPLIŃSKI'S FIXED POINT THEOREMS IN 2-BANACH SPACES

下载PDF
导出
摘要 In this work,we apply the Brzdȩk and Ciepliński's fixed point theorem to investigate new stability results for the generalized Cauchy functional equation of the form f(ax+by)=af(x)+bf(y),where a,b∈N and f is a mapping from a commutative group(G,+)to a 2-Banach space(Y,||·,·||).Our results are generalizations of main results of Brzdȩk and Ciepliński[J Brzdȩk,K Ciepliński.On a fixed point theorem in 2-normed spaces and some of its applications.Acta Mathematica Scientia,2018,38B(2):377-390].
出处 《Acta Mathematica Scientia》 SCIE CSCD 2020年第3期824-834,共11页 数学物理学报(B辑英文版)
基金 This work was supported by Research Professional Development Project under the Science Achievement Scholarship of Thailand(SAST)and Thammasat University Research Fund,Contract No.TUGG 33/2562 The second author would like to thank the Thailand Research Fund and Office of the Higher Education Commission under grant no.MRG6180283 for financial support during the preparation of this manuscript.
  • 相关文献

参考文献1

二级参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部