摘要
目的使用线粒体蛋白质谱分析方法,探讨心肌肥厚预适应的分子保护机制。方法14只雄性C57BL6/J小鼠随机分为假手术组(n=6)和心肌肥厚预适应组(n=8),建立小鼠心肌肥厚预适应模型(主动脉弓缩窄3 d、解除缩窄4 d),随机选假手术组3只、心肌肥厚预适应组4只小鼠做蛋白质组学分析,其余小鼠用于形态功能学实验。运用小鼠心脏超声及单个心肌细胞收缩检测技术检测心脏功能学变化,通过心脏常规病理切片及电子显微镜检测心肌组织形态学和线粒体超微结构变化,运用蛋白质组学技术及生物信息学方法,筛选出差异线粒体蛋白,并通过Western blotting验证关键蛋白表达水平变化。结果心肌肥厚预适应组小鼠与假手术组小鼠相比,心脏功能及心肌组织形态学改变无显著性,但透射电子显微镜检测提示,线粒体嵴密度增加,后续利用线粒体蛋白质组学方法共筛选到20个差异表达蛋白(5个上调,15个下调);随后生物信息学分析显示,差异蛋白主要与线粒体核糖体蛋白有关;关键蛋白的Western blotting验证结果与组学分析结果相一致。结论心肌肥厚预适应刺激能够增强心肌线粒体功能,这可能与线粒体核糖体蛋白介导的线粒体氧化磷酸化复合体的转录加工、运输过程相关。
Objective To investigate the molecular protective mechanisms of myocardial hypertrophic preconditioning by mitochondrial quantitative proteomics.Methods Fourteen C57BL6/J male mice were randomly divided into sham group(n=6)and cardiac hypertrophy preconditioning group(n=8).The murine model of cardiac hypertrophy preconditioning was established by imposing transverse aortic constriction for 3 days and debanding the aorta for 4 days.Three mice from sham group and four mice from cardiac hypertrophy preconditioning group were randomly selected for proteomic analysis,and the remaining mice were used for functional and morphological experiments.The cardiac function was detected by echocardiography,and mechanical properties of cardiomyocytes were assessed using a SoftEdge Myocam.Cardiac morphology and mitochondrial ultrastructure were detected by pathological sections and transmission electron microscopy.The most significant mitochondrial proteins were screened by label-free quantitative proteomics and analyzed by bioinformatics analysis.Western blotting was used to verify the expression changes.Results Compared with the sham group,there were no significant changes in cardiac function and myocardial tissue morphology in the cardiac hypertrophy preconditioning group.However,electron microscopy analyses showed that the density of mitochondrial cristae increased in cardiac hypertrophy preconditioning group.Proteomic analysis screened 20 differentially expressed mitochondrial proteins.Bioinformatics analysis revealed that differentially expressed proteins were mainly related to mitochondrial ribosomal proteins.Western blotting results of key proteins were consistent with proteomic analysis.Conclusion Myocardial hypertrophic preconditioning can promote the energy metabolism of myocardial mitochondria,which may be related to the transcription,processing and transportation of mitochondrial oxidative phosphorylation complex mediated by mitochondrial ribosomal proteins.
作者
辛凯悦
马雷雷
董震
马秀瑞
孙爱军
XIN Kai-yue;MA Lei-lei;DONG Zhen;MA Xiu-rui;SUN Ai-jun(Dapartment of Cardiology,Cheeloo College of Medicine,Shandong University,Ji’nan 250012,China;Dapartment of Cardiology,Zhongshan Hospital,Fudan University,Shanghai 250032,China)
出处
《解剖学报》
CAS
CSCD
北大核心
2020年第3期378-384,共7页
Acta Anatomica Sinica
关键词
心肌肥厚预适应
主动脉弓缩窄
心肌能量代谢
线粒体核糖体
蛋白质组学
免疫印迹法
小鼠
Myocardial hypertrophic preconditioning
Transverse aortic constriction
Myocardial energy metabolism
Mitochondrial ribosome
Proteomics
Western blotting
Mouse