摘要
为能够准确预测超磁致伸缩电静液作动器(M-EHA)的动态输出特性,提出一种考虑流体体积模量和密度变化的非线性动力学建模方法。采用Jiles-Atherton磁滞模型对超磁致伸缩材料的本征非线性进行描述,并通过整流阀振动方程、流量方程、管路压降方程和液压缸动力学方程对流体整体传动特性进行建模。为研究流体体积模量和密度变化的影响,将流体有效体积模量处理为压力的函数,并结合电液模拟理论研究了管路中流体的可压缩性、惯性以及黏性对于M-EHA输出性能的影响,最终建立了其非线性动力学模型。采用4阶龙格库塔法对模型进行迭代求解,并结合试验对比分析,研究了驱动频率、偏置压力以及负载与作动系统输出性能之间的关系。研究结果表明,作动系统输出性能随驱动频率呈双峰变化趋势,且随着偏置压力增加,峰值频率上升,在2.6 MPa偏压时,达到最佳输出水平,为高性能M-EHA的设计开发与优化奠定了理论基础。
In order to accurately predict the dynamic output characteristics of M-EHA, a nonlinear dynamics model considering fluid bulk modulus and density variation is proposed. The intrinsic nonlinearity of giant magnetostrictive materials is described by the Jiles-Atherton model. The overall fluid transmission characteristics are modeled by coupling the valve vibration equation, the flow equation, the fluid lines pressure drop equation and the hydraulic cylinder dynamic equation. In order to study the effects of modulus and density variation during high-pressure fluid transmission, the fluid equivalent modulus is treated as a function of pressure, and the effects of fluid compressibility, inertia and viscosity on the output characteristics of M-EHA are studied based on electro-hydraulic analogies theory. Finally, the nonlinear dynamic model of the whole actuation system is established. The model is iteratively solved by the fourth-order Runge-Kutta method. Combined with the experimental comparison, the relationship between driving frequency, bias pressure, load and output performance of the operating system is studied. The results show that the output performance of the actuation system varies bimodally with the driving frequency, and as the biase pressure increases, the peak frequency rises and the optimal output level is reached at 2.6 MPa bias. It lays a theoretical foundation for the design development and optimization of high-performance M-EHA.
作者
李波
朱彦超
舒亮
杨家斌
陈定方
LI Bo;ZHU Yanchao;SHU Liang;YANG Jiabin;CHEN Dingfang(Institute of Intelligent Manufacturing and Control,Wuhan University of Technology,Wuhan 430063;The Key Laboratory of Low-Voltage Apparatus Intellectual Technology of Zhejiang,Wenzhou University,Wenzhou 325035)
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2020年第10期225-234,共10页
Journal of Mechanical Engineering
基金
国家自然科学基金(51975418)
浙江省自然科学基金(LY15E050011)
中国博士后科学基金(2015M571904)资助项目。
关键词
磁致伸缩
电静液作动器
动态建模
体积模量变化
密度变化
magnetostrictive
electro hydrostatic actuator
dynamic modeling
bulk modulus variation
density variation