摘要
本文将基于受控拉格朗日函数(CL)的控制器设计方法应用到高阶、强耦合、非线性的永磁同步电动机(PMSM)的控制问题中.利用期望的受控能量来构造受控拉格朗日函数,并在广义力中引入速度一次项的保守力,得到原始方程与受控方程相匹配的条件.通过求解匹配条件中的偏微分方程,得到的非线性光滑反馈控制律可同时实现位置与速度的全局渐近镇定.最后,利用LaSalle不变定理对其进行证明.仿真结果表明了控制律的有效性.
In this paper,the controller design method based on the controlled Lagrangians(CL)is applied to control a high-order,strong coupled,nonlinear permanent magnet synchronous motor(PMSM).The CL is constructed by using the desired controlled energy,and the conservative force of the velocity term is introduced into the generalized force to obtain the matching condition of the original equations and the controlled equations.By solving the partial differential equations in the matching condition,we develop a nonlinear smooth feedback control law which ensures the global asymptotic stability of position and velocity simultaneously.Finally,the LaSalle invariance theorem is used to prove the stability.The simulation results show the effectiveness of the control law.
作者
李茂青
刘建强
高锋阳
张廷荣
LI Mao-qing;LIU Jian-qiang;GAO Feng-yang;ZHANG Ting-rong(Department of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou Gansu 730070,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2020年第6期1406-1412,共7页
Control Theory & Applications
基金
国家重点研发计划项目(2018YFB1201602-06)
国家自然科学基金地区项目(61164010)资助.
关键词
永磁同步电动机
受控拉格朗日函数法
欠驱动力学系统
位置与速度镇定
permanent magnet synchronous motor
controlled Lagrangians
underactuated mechanical systems
position and velocity stabilization