期刊文献+

《史记》历史事件自动抽取与事理图谱构建研究 被引量:29

Research on Automatic Extraction of Historical Events and Construction of Event Graph Based on Historical Records
原文传递
导出
摘要 [目的/意义]《史记》是我国第一部纪传体史书,几乎囊括黄帝时代到汉武帝元狩元年3000多年的重大历史事件。如何快速准确地发现这些历史事件及其之间的内在联系,对于透过历史现象、揭示历史实质以及发现历史规律具有重要意义。[方法/过程]在BERT模型和LSTM-CRF模型的基础上,提出面向《史记》的历史事件及其组成元素抽取方法,并基于此构建《史记》事理图谱。[结果/结论]实验结果表明,利用所提方法抽取历史事件及其组成元素的F1值分别达到0.823和0.760。通过事理图谱能够发现蕴含在《史记》中鲜为人知的知识,这为文献学、历史学、社会学等领域专家开展研究提供必要的资料准备。 [Purpose/significance]Historical Records is the first biographical history book in China,which contains almost all the significant historical events during more than 3000 years between the Yellow Emperor and the Emperor Wu of Han.How to efficiently extract these historical events and their relationships is quite important to penetrate the historical appearances,reveal the historical essences and discover the historical laws.[Method/process]The BERT model and LSTM-CRF model were introduced in this paper,and historical events extraction method based on Historical Records was proposed and the historical event graph was constructed.[Result/conclusion]The experiment results show that the F1 values of historical event and its components extraction are respectively 0.823 and 0.760.The rare known knowledge is invented by the event graph,which providing essential literature foundation for many researchers,such as philology,history and sociology,to conduct their researches.
作者 刘忠宝 党建飞 张志剑 Liu Zhongbao;Dang Jianfei;Zhang Zhijian(Key Laboratory of Cloud Computing and Internet-of-Things Technology(Quanzhou University of Information Engineering),Fujian Province University,Quanzhou 362000;School of Software,North University of China,Taiyuan 030051)
出处 《图书情报工作》 CSSCI 北大核心 2020年第11期116-124,共9页 Library and Information Service
基金 国家社会科学基金一般项目"大数据环境下面向图书馆资源的跨媒体知识服务研究"(项目编号:19BTQ012)研究成果之一。
关键词 《史记》 历史事件抽取 事理图谱 BERT模型 双向长短期记忆网络 条件随机场 Historical Records extraction of historical events event graph bidirectional encoder representations from transformers(BERT) bidirectional long short-term memory(BiLSTM) conditional random field(CRF)
  • 相关文献

参考文献5

二级参考文献52

  • 1黄发良,钟智.用于分类的支持向量机[J].广西师范学院学报(自然科学版),2004,21(3):75-78. 被引量:14
  • 2梁晗,陈群秀,吴平博.基于事件框架的信息抽取系统[J].中文信息学报,2006,20(2):40-46. 被引量:38
  • 3吕德新,张桂平,蔡东风,朱江涛.基于SVM的疑问句问点语义角色标注[J].沈阳航空工业学院学报,2006,23(1):44-46. 被引量:4
  • 4李丽双,黄德根,陈春荣,杨元生.SVM与规则相结合的中文地名自动识别[J].中文信息学报,2006,20(5):51-57. 被引量:32
  • 5王啸吟.ACE评测原则与方法ir.hit.edu.cn.
  • 6董振东,董强.http://www.keenage.com/zhlwang/c-zhiwang.html,2009.5.
  • 7GAN Kok Wee, WONG Ping Wai. Annotating Information Structures in Chinese Texts Using HowNet. Annual Meeting of the ACL 2000 HongKong.
  • 8Grishman R.Information Extraction:Techniques and Challenges.In Information Extraction (Ed.).Maria Teresa Pazienza,Springer Notes in Artificial Intelligence,Springer-Verlag,1997
  • 9Riloff E.Automatically Constructing a Dictionary for Information Extraction Tasks.In:Proc.Eleventh National Conf.on Artificial Intelligence,1993:811-816
  • 10Riloff E.Automatically Generating Extraction Patterns from Untagged Text.In:Proc.Thirteenth National Conf.on Artificial Intelligence (AAAI-96),1996:1044-1049

共引文献55

同被引文献522

引证文献29

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部