摘要
针对空空导弹协同攻击高速大机动目标问题,提出了一种带有期望攻击角约束的多弹协同制导律。首先,在纵向平面内建立弹-目几何关系,建立含有攻击角约束的导弹视线方向和视线法向方向的多弹协同制导模型;其次,针对视线方向制导模型,基于代数图论和有限时间一致性理论设计了视线方向上的协同制导律,保证3枚导弹能够实现对目标的协同攻击,并利用现有观测器对目标的机动能力进行估计;再次,基于快速非奇异终端滑模控制理论设计了视线法向方向上的制导律,保证3枚导弹均能够精确命中目标,同时保证弹-目的视线角收敛到期望的终端视线角,视线角速率收敛到0;最后,仿真验证了所设计制导律的有效性。
To deal with the problem of air-to-air missile collaboratively attacking high-speed and large-maneuvering targets,a multi-missile cooperative guidance law with the desired impact angle constraints is proposed.Firstly,the missile-target relative motion equation is established in the two-dimensional plane,and a collaborative guidance model with impact angle constraints is established on both line-of-sight(LOS)direction and the normal direction of LOS.Secondly,for the LOS guidance model,with the use of basic graph theory and the finite-time consistency theory,the cooperative guidance law along the LOS direction is designed to guarantee that all missiles simultaneously attack the high-speed and large-maneuvering target in finite time,and a non-homogeneous disturbance observer is used to estimate the maneuverability capability of the target.Thirdly,based on the fast non-singular terminal sliding mode control theory,the guidance law along the normal direction of LOS is designed to guarantee that all missiles can attack the high-speed and large-maneuvering target,and the LOS angular rate between missiles and the target converges to zero while the LOS angle converges to the desired terminal LOS angle simultaneously.Finally,the simulation results show the effectiveness of the cooperative guidance law designed in this paper.
作者
郭正玉
韩治国
Guo Zhengyu;Han Zhiguo(China Airborne Missile Academy,Luoyang 471009,China;Aviation Key Laboratory of Science and Technology on Airborne Guided Weapon,Luoyang 471009,China;School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China)
出处
《航空兵器》
CSCD
北大核心
2020年第3期62-66,共5页
Aero Weaponry
基金
航空科学基金项目(20170112013,20180153002)。
关键词
协同制导
攻击角约束
快速非奇异终端滑模
有限时间
collaborative guidance
impact angle constraint
fast non-singular terminal sliding mode
finite time