期刊文献+

苹果可溶性固形物含量的多元线性回归预测 被引量:6

Prediction for Soluble Solids Content of Apples Based on Multi Linear Regression
下载PDF
导出
摘要 目的可溶性固形物含量是评价苹果品质的重要指标,为开发苹果品质快速检测设备提供理论基础。方法采用高光谱图像采集系统采集"富士"苹果的高光谱图像,并获取感兴趣区域的反射光谱;应用连续投影算法对标准正态变换预处理后的光谱进行降维;基于选取的特征光谱建立预测苹果可溶性固形物含量的多元线性回归模型。结果采用连续投影算法从256个全光谱中提取了12个波长作为特征光谱,明显提升了多元线性回归预测模型的运行效率;基于特征光谱建立的多元线性回归预测模型具有较好的校正性能(RC=0.804,RCm=0.665%)和预测性能(RP=0.859,RPm=0.413%)。结论研究建立的苹果可溶性固形物含量预测模型性能较稳定,可以满足实际应用需求。 Soluble solids content is an important index to evaluate apple quality.The works aims to provide theoretical basis for the development of detection equipment for rapidly predicting apple quality.The hyperspectral image acquisition system was used to collect hyperspectral images of"Fuji"apples and obtain the reflectance spectra in the regions of interest.The successive projection algorithm was used for the dimensionality reduction of the reflectance spectra subject to standard normal variation preprocessing.The multi linear regression model was established based on selected characteristic wavelengths to predict soluble solids content of apples.The results showed that 12 wavelengths as characteristic spectra were extracted by successive projection algorithm from 256 full spectra,and the working efficiency of multi linear regression prediction model was obviously improved.The multi linear regression model based on characteristic spectra had better calibration ability(RC=0.804,RCm=0.665%)and prediction ability(RP=0.859,RPm=0.413%).The prediction model established in this study for detection of soluble solids content of apples has stable properties and can meet the requirements of practical application.
作者 孟庆龙 尚静 张艳 MENG Qing-long;SHANG Jing;ZHANG Yan(Guiyang University,Guiyang 550005,China)
机构地区 贵阳学院
出处 《包装工程》 CAS 北大核心 2020年第13期26-30,共5页 Packaging Engineering
基金 国家自然科学基金(61505036) 贵州省科技计划(黔科合基础[2020]1Y270) 贵州省普通高等学校工程研究中心项目(黔教合KY字[2016]017)。
关键词 高光谱成像 苹果 可溶性固形物含量 多元线性回归 无损检测 hyperspectral imaging apple soluble solids content multi linear regression nondestructive detection
  • 相关文献

参考文献7

二级参考文献76

  • 1蔡健荣,汤明杰,吕强,赵杰文,陈全胜.基于siPLS的猕猴桃糖度近红外光谱检测[J].食品科学,2009,30(4):250-253. 被引量:18
  • 2杨刚华.蓝莓[J].湖南农业,2013(10):19-19. 被引量:2
  • 3洪添胜,乔军,Ning Wang,Michael O. Ngadi,赵祚喜,李震.基于高光谱图像技术的雪花梨品质无损检测[J].农业工程学报,2007,23(2):151-155. 被引量:111
  • 4洪添胜,李震,吴春胤,刘敏娟,乔军,Wang Ning.高光谱图像技术在水果品质无损检测中的应用[J].农业工程学报,2007,23(11):280-285. 被引量:50
  • 5MCGLONE V A,CLARK C J,JORDAN R B.Comparing density and VNIR methods for predicting quality parameters of yellow- fleshed kiwifruit {Actinidia chinensis)[J].Postharvest Biology and Technology,2007,46(1):1-9.
  • 6MOGHIMI A,AGHKHANI M H,SAZGARNIA a,et al.Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity(pH)of kiwifruit[J].Biosystems Engineering,2010,106(3):295-302.
  • 7GOWEN A,OfDONNELL C,CULLEN P,et al.Hyperspectral imaging:an emerging process analytical tool for food quality and safety control[J].Trends in Food Science and Technology,2007,18(12):590-598.
  • 8ZHU Qibing,HUANG Min,ZHAO Xin,et al.Wavelength selection of hyperspectral scattering image using new semi-supervised affinity propagation for prediction of Hrmness and soluble solid content in apples[J].Food Analytical Methods,2013,6(1):334-342.
  • 9LEIVA-VALENZUELA G A,LU R,AGUILERA J M.Assessment of internal quality of blueberries using hyperspectral transmittance and reflectance images with whole spectra or selected wavelengths[J].Innovative Food Science and Emerging Technologies,2014,24:2-13.
  • 10ELMASRY Gi WANG N,VIGNEAULT C.Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks[J].Postharvest Biology and Technology,2009,52(1):1-8.

共引文献181

同被引文献67

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部