摘要
为了提高混合动力有轨电车制动过程中制动能量的回收效率,提出一种考虑储能系统始末状态的能量管理策略.在有轨电车从启动到制动的运行过程中,基于极小值原理对混合动力系统进行功率分配,以实现对超级电容荷电状态(state of charge,SOC)安全范围的有效控制,并保证在制动时刻超级电容具有足够的SOC余量来吸收制动功率;同时,将有轨电车启动、运行过程中的牵引控制策略与制动过程的能量回收策略相结合,采用绝缘栅门极晶体管(insulated gate bipolar translator,IGBT)斩波器与制动电阻相结合使用的方式,抑制母线电压的抬升;最后基于实际的有轨电车运行工况,在MATLAB/Simulink平台下进行了仿真测试.结果显示,在有轨电车制动时刻,超级电容SOC均能够按照预期下降到0.4左右,且在制动全过程中,有轨电车母线电压始终处于875 V以下,满足母线电压的控制要求.
In order to improve the efficiency of absorbing the braking energy for hybrid trams,an energy management strategy is proposed,which takes into account the initial and final states of charge(SOC)of an energy storage system.The strategy allocates the load power for the hybrid power system by using the minimum principle from the tram start to the braking,which achieves the effective control on the safety range of the supercapacitor SOC,and ensures sufficient remaining SOC to absorb the braking energy as the tram brakes.Furthermore,the strategy combines the tram traction control during start and traction operation with the energy recovery during the braking process,and uses an integrated device composed of the insulated gate bipolar transistor chopper and braking resistor to suppress the bus voltage rise.Finally,based on the actual tram operating conditions,a simulation test is conducted with the MATLAB/Simulink platform.The results show that at the moment of tram braking,the supercapacitor SOC can reach about 0.4 as expected,and during the entire braking process,the bus voltage can always lie below 875 V,which meets the requirements of bus voltage control.
作者
李奇
黄文强
尚伟林
朱亚男
苏波
陈维荣
李明
LI Qi;HUANG Wenqiang;SHANG Weilin;ZHU Yanan;SU Bo;CHEN Weirong;LI Ming(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,China;CRRC Tangshan Co.Ltd.,Tangshan 063000,China)
出处
《西南交通大学学报》
EI
CSCD
北大核心
2020年第4期820-827,共8页
Journal of Southwest Jiaotong University
基金
国家重点研发计划(2017YFB1201003-019)
国家自然科学基金(51977181)
四川省科技计划(19YYJC0698)
霍英东教育基金会高等院校青年教师基金(171104)。
关键词
有轨电车
新型供电方式
混合动力
能量管理策略
tram
novel traction power system
hybrid system
energy management strategy