期刊文献+

基于改进PSO算法的人群疏散模型 被引量:15

Crowd Evacuation Model Based on Improved PSO Algorithm
原文传递
导出
摘要 针对粒子群优化算法(PSO)在疏散模拟中局部寻优能力差、易过早收敛的问题,提出了一种基于改进PSO算法的人群疏散模型。在原有模型基础上引入正向驱动力、排斥驱动力、疏散人员的恐慌程度等因子;根据环境因素和人群移动动态调整疏散人员的方向,并在最佳出口选择机制下趋向理想出口;对出口位置等物理因素进行疏散效率的参数化仿真实验。实验结果表明了疏散模型的有效性,可有效避免疏散过程中的局部拥堵现象,从而为建筑设计与管理人员提供合理参考。 Aiming at the poor local optimization ability and easy premature convergence of the particle swarm optimization(PSO)algorithm in evacuation simulation,a crowd evacuation model based on the improved PSO algorithm is proposed.On the basis of the original model,factors such as the forward driving force,exclusion driving force and panic degree of evacuees are introduced.According to the environmental factors and crowd movement,evacuees'direction is dynamically adjusted,and tends to the ideal exit under the optimal exit selection mechanism.The parametric simulation experiment of evacuation efficiency is carried out for the physical factors such as the exit location.The experimental results show that the evacuation model is effective,and can avoid local congestion,provides reasonable reference to the architectural design and management.
作者 李昌华 毕成功 李智杰 Li Changhua;Bi Chenggong;Li Zhijie(School of Information and Control Engineering,Xi'an University of Architecture and Technology,Xi'an 710055,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2020年第6期1000-1008,共9页 Journal of System Simulation
基金 国家自然科学基金(61373112) 陕西省自然科学基金(2016JM6078)。
关键词 疏散模拟 PSO算法 驱动力 恐慌程度 出口选择 evacuation simulation PSO algorithm driving force panic level export choice
  • 相关文献

参考文献3

二级参考文献34

  • 1迟妍.公共突发事件中非友好人群行为研究[J].中国公共安全(学术版),2012(2):1-4. 被引量:4
  • 2冯骏,薛云灿,江金龙.一种新的改进粒子群算法研究[J].河海大学常州分校学报,2006,20(1):10-13. 被引量:16
  • 3Helbing D,Farkas I,Vicsek T.Simulating dynami-cal features of escape panic[J].Nature,2000,407(6803):487-490.
  • 4Zhao D L,Yang L Z,LI J.Occupants′behavior ofgoing with the crowd based on cellular automata oc-cupant evacuation model[J].Physica A(StatisticalMechanics and its Applications),2008,387(14):3 708-3 718.
  • 5Varas A,Cornejo M D,Mainemer D,et al.Cellularautomaton model for evacuation process with obsta-cles[J].Physica A(Statistical Mechanics and its Ap-plications),2007,382(2):631-642.
  • 6Song W G,Xu X,Wang B H,et al.Simulation ofevacuation processes using a multi-grid model for pe-destrian dynamics[J].Physica A(Statistical Me-chanics and its Applications),2006,363(2):492-500.
  • 7Izquierdo J,Montalvo I,Pérez R,et al.Forecastingpedestrian evacuation times by using Swarm intelli-gence[J].Physica A(Statistical Mechanics and itsApplications),2009,388(7):1 213-1 220.
  • 8Kennedy J,Eberhart R C.Particle swarm optimiza-tion[C]∥IEEE International Conference on NeuralNetworks,Perth,WA,1995(4):1 942-1 948.
  • 9Shi Y,Eberhart R C.A modified particle swarm op-timizer[C]∥IEEE International Conference on Evo-lutionary Computation Proceedings,Anchorage,AK,1998:69-73.
  • 10Jin Y X,Cheng H Z,Yan J Y,et al.New discretemethod for particle swarm optimization and its appli-cation in transmission network expansion planning[J].Electric Power Systems Research,2007,77(3-4):227-233.

共引文献18

同被引文献152

引证文献15

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部