摘要
利用非齐度量测度空间的性质,应用分数次积分算子的有界性理论,基于非齐度量测度空间上Herz空间的刻画以及Herz型Hardy空间的原子分解和分子分解理论,证明了广义分数次积分算子与Lipschitz函数生成的交换子在非齐度量测度空间上的Herz空间和Herz型Hardy空间的有界性.
In this paper,using the properties of the non-homogeneous metric measure spaces,applying the theory of boundedness for singular integral operators,and based on the characterization of Herz spaces and the atomic and molecular decompositions of Herz-type Hardy spaces with non-homogeneous metric measure,the boundedness of the commutators generated by the generalized fractional integral operators and Lipschitz functions on the Herz spaces and Herz-type Hardy spaces with non-homogeneous metric measure are proved.
作者
张振荣
赵凯
ZHANG Zhen-rong;ZHAO Kai(Department of Mathematics and Physics,Qingdao Huanghai University,Qingdao Shandong 266427,China;School of Mathematics and Statistics,Qingdao University,Qingdao Shandong 266071,China)
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第8期88-96,共9页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金项目(11471176,11871293)。
关键词
非齐度量测度空间
广义分数次积分算子
交换子
有界性
non-homogeneous metric measure space
generalized fractional integral operator
commutator
boundedness