期刊文献+

弹性函数的平方和指标

Sum-of-Squares Indicator of Resilient Functions
下载PDF
导出
摘要 Son等给出了0-弹性函数(平衡函数)的平方和指标的下界。Maitra给出了m-弹性函数的平方和指标的下界。基于Sarkar和Maitra关于m-弹性函数的Walsh谱的结果[1],一个m-弹性函数的平方和指标的新的下界被给出。可以将这3个下界结合起来,针对特定的m(m大于或等于0,小于或等于m-3),给出相应的下界。然后发现,在许多情形下,新下界比上面提到的两个下界要紧一些。最后证明,当m等于n-3时,m-弹性函数的平方和指标要么是23n-2,要么23n。m等于是n-2,n-1时,m-弹性函数的平方和指标是确定的,它们是23n。 Son et al. give the lower bound on the sum of squares indicator of 0-resilient function(balanced function). Maitra gives the lower bound on the sum of squares indicator of m-resilient function. Based on the result of Walsh spectrum of m-resilient function given by Sarkar and Maitra[1],a new lower bound on the sum of squares indicator of m-resilient function is given. By combining the new lower bound with the two old lower bounds,the corresponding lower bound is obtained for particular m(m is no less than 0 and not greater than m-3). Then,it is found that in many cases,the new lower bound is tighter than the above mentioned two old lower bounds. Finally,it is shown that when m is equal to n-3,the sum of squares indicator of m-resilient function is 23n-2 or 23n,when m is equal to n-2 or n-1,the sum of squares indicator of m-resilient function is 23n.
作者 王运兵 王松 WANG Yunbing;WANG Song(No.30 Institute of China Electronics Technology Group Corporation,Chengdu 610041)
出处 《舰船电子工程》 2020年第6期33-35,51,共4页 Ship Electronic Engineering
基金 国家重点研发计划项目(编号:2017YFB0802000)资助。
关键词 弹性函数 平方和指标 下界 WALSH谱 resilient function the sum of squares indicator lower bound Walsh spectrum
  • 相关文献

参考文献6

二级参考文献47

  • 1NICOLAS Courtois,ALEXANDER Klimov,JACQUES Patarin ec al.Efficient algorithms for solving overdefined systems of multivariate polynomial equations.Bart Preneel.Euro2000[C].Bruges:Springer,2000,392-407.
  • 2NICOLAS Courtois.Higher order correlation attacks:XL algorithm and cryptanalysis of Toyocrypt[EB/OL].Available on http://eprint.iacr.org/2002/087,pdf.
  • 3FREDERIK Armknecht.A linearization attack on the Bhctooth keystream generator[EB/OL].Available on http://epfint,iaer.org/2002/191,pdf.
  • 4NICOLAS Courtois,WILL/Meier.Algebraic attacks on stream ciphers with linear feedback.Dan Boneh.Advances in Cryptology Eurocrypt 2003[C].Berlin:Springer-Verlag,2003,345-359.
  • 5WILLI/Meier,ENES Pasalie,CLAUDE Carlet.Algebraic attacks and decomposition of boolean functions.Interlaken.Advances in CryptologyEurocrypt 2004[C].Berlin:Springer-Verlag,2004,474-491.
  • 6Deepak Kumar Dalai,Subhamoy Maitra,Sumanta Sarkar.Basic Theory in Construction of Boolean Functions with Maximum Possible Annihator Immunity[EB/OL].avaiable from http://eprint,iacr.org/2005/229,pdf.
  • 7NYBERG K. Perfect nonlinear S-boxes[J]. Lecture Notes in Computer Science, 1991, 547: 378-386.
  • 8BIERBRAUER J. New semifields, PN and APN functions [J]. Des Codes Cryptography, 2010, 54 ( 3 ) : 189-200.
  • 9BUDAGHYAN L, CARLET C. New perfect nonlinear multinomials over Fp2k for any odd prime p[J]. Lecture Notes in Com- puter Science, 2008, 5203 : 403-414.
  • 10AT N, COHEN S D. A new tool for assurance of perfect nonlinearity [ J ]. Lecture Notes in Computer Science, 2008, 5203 : 415-419.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部