摘要
基于搭建的直热式水源热泵实验装置,实验研究了R744/R600a和R600a系统变工况循环性能,分析了热汇出口温度对冷凝器内换热流体温度分布的影响。结果表明:随着热汇出口温度升高,R744/R600a和R600a热泵系统的COP_h和制热量Q_h均呈降低趋势,而相应的冷凝压力、压比和排气温度等均呈升高趋势;在45~60℃的热汇出口温度范围内,R744/R600a系统的COP_h和制热量Q_h均明显优于R600a系统;与R600a系统相比,显著的温度滑移导致R744/R600a系统冷凝器内换热流体间的温度匹配水平明显提高,相应的冷凝器不可逆损失显著降低;热汇出口温度的升高导致了R744/R600a系统冷凝器内换热流体间的温度匹配水平降低及不可逆损失增大。
Based on the direct heat water source heat pump experimental device,the off-design operating cycle performances of heat pump system with R744/R600 a and R600 a were studied experimentally and the influences of the heat sink outlet temperature on the temperature distribution of the heat transfer fluids in the condenser were analyzed.The results show that,as the heat sink outlet temperature increases,the COP_h and heat capacities Q_h of the R744/R600 a and R600 a system decrease,but their condensing pressures,pressure ratios and exhaust temperatures increase;both the COP_hand heating capacity Q_h of the R744/R600 a system are significantly better than those of R600 a system in the heat sink outlet temperature range of 45~60°C;compared to R600 a system,the significant temperature glide results in the better temperature matching levels between the heat transfer fluids in the condenser of the R744/R600 a system and the lower irreversible loss of the condenser;as the heat sink outlet temperature increases,the temperature matching level between the heat transfer fluids in the condenser of the R744/R600 a system decreases,and the irreversible loss of the condenser increases.
作者
范晓伟
马胜飞
巨福军
宋昊展
张纪军
赵成明
Fan Xiaowei;Ma Shengfei;Ju Fujun;Song Haozhan;Zhang Jijun;Zhao Chengming(School of Energy and Environment,Zhongyuan University of Technology,Zhengzhou 450007,China;School of Civil Engineering,Zhengzhou University,Zhengzhou 450001,China;Department of Architectural Engineering,Jiyuan Vocational and Technical College,Jiyuan 454650,China)
出处
《低温与超导》
CAS
北大核心
2020年第6期98-102,共5页
Cryogenics and Superconductivity
基金
济源市科技攻关项目(18022011)资助。
关键词
R744/R600a
热泵热水器
变工况
系统性能
温度分布
R744/R600a
Heat pump water heater
Off-design condition
System performance
Temperature distribution