摘要
By periodically aggregating local learning updates from edge users, federated edge learning (FEEL) is envisioned as a promising means to reap the benefit of local rich da?ta and protect users'privacy. However, the scarce wireless communication resource greatly limits the number of participated users and is regarded as the main bottleneck which hin?ders the development of FEEL. To tackle this issue, we propose a user selection policy based on data importance for FEEL system. In order to quantify the data importance of each user, we first analyze the relationship between the loss decay and the squared norm of gradi?ent. Then, we formulate a combinatorial optimization problem to maximize the learning effi?ciency by jointly considering user selection and communication resource allocation. By problem transformation and relaxation, the optimal user selection policy and resource alloca?tion are derived, and a polynomial-time optimal algorithm is developed. Finally, we deploy two commonly used deep neural network (DNN) models for simulation. The results validate that our proposed algorithm has strong generalization ability and can attain higher learning efficiency compared with other traditional algorithms.
基金
This work was supported in part by the National Natural Science Founda⁃tion of China under Grant No.61671407.