期刊文献+

Joint User Selection and Resource Allocation for Fast Federated Edge Learning 被引量:1

下载PDF
导出
摘要 By periodically aggregating local learning updates from edge users, federated edge learning (FEEL) is envisioned as a promising means to reap the benefit of local rich da?ta and protect users'privacy. However, the scarce wireless communication resource greatly limits the number of participated users and is regarded as the main bottleneck which hin?ders the development of FEEL. To tackle this issue, we propose a user selection policy based on data importance for FEEL system. In order to quantify the data importance of each user, we first analyze the relationship between the loss decay and the squared norm of gradi?ent. Then, we formulate a combinatorial optimization problem to maximize the learning effi?ciency by jointly considering user selection and communication resource allocation. By problem transformation and relaxation, the optimal user selection policy and resource alloca?tion are derived, and a polynomial-time optimal algorithm is developed. Finally, we deploy two commonly used deep neural network (DNN) models for simulation. The results validate that our proposed algorithm has strong generalization ability and can attain higher learning efficiency compared with other traditional algorithms.
出处 《ZTE Communications》 2020年第2期20-30,共11页 中兴通讯技术(英文版)
基金 This work was supported in part by the National Natural Science Founda⁃tion of China under Grant No.61671407.
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部